
numpydl Documentation
Release 0.1.0

NumpyDL

May 11, 2017





Contents:

1 User Guide 3
1.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 API Reference 7
2.1 npdl.activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 npdl.initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Examples 11

4 Indices and tables 13

Bibliography 15

Python Module Index 17

i



ii



numpydl Documentation, Release 0.1.0

NumpyDL is a simple deep learning library based on pure Python/Numpy.

NumpyDL is a work in progress, input is welcome. The available documentation is limited for now. The project is on
GitHub.

Contents: 1

https://github.com/oujago/NumpyDL


numpydl Documentation, Release 0.1.0

2 Contents:



CHAPTER 1

User Guide

The NumpyDL user guide explains how to install NumpyDL, how to build and train neural networks using NumpyDL,
and how to contribute to the library as a developer.

Installation

NumpyDL has a couple of prerequisites that need to be installed first, but it is not very picky about versions. The
most important package is Numpy. At the same time, you should install some other useful packages, such as scipy
and scikit-learn. Most importantly, these packages are not required to install the specific version to fit the version of
NumpyDL you choose to install.

We strongly recommend you to install the Miniconda or a bigger installer Anaconda which is a leading open data
science platform powered by Python and well integrated the efficient scientific computing platform MKL.

Prerequisites

Python + pip

NumpyDL currently requires Python 3.3 or higher to run. Please install Python via the package manager of your
operating system if it is not included already.

Python includes pip for installing additional modules that are not shipped with your operating system, or shipped in
an old version, and we will make use of it below. We recommend installing these modules into your home directory
via --user, or into a virtual environment via virtualenv.

C compiler

Numpy/scipy require a C compiler if you install them via pip. On Linux, the default compiler is usually‘‘gcc‘‘, and
on Mac OS, it’s clang. On Windows, we recommend you to install the Miniconda or Anaconda. Again, please install
them via the package manager of your operating system.

3

https://github.com/numpy/numpy
https://github.com/scipy/scipy
https://github.com/scikit-learn/scikit-learn
https://conda.io/miniconda.html
https://www.continuum.io/downloads
https://software.intel.com/en-us/forums/intel-math-kernel-library
http://www.dabapps.com/blog/introduction-to-pip-and-virtualenv-python/
https://conda.io/miniconda.html
https://www.continuum.io/downloads


numpydl Documentation, Release 0.1.0

numpy/scipy + BLAS

NumpyDL requires numpy of version 1.6.2 or above, and sometimes also requires scipy 0.11 or above. Numpy/scipy
rely on a BLAS library to provide fast linear algebra routines. They will work fine without one, but a lot slower, so it
is worth getting this right (but this is less important if you plan to use a GPU).

If you install numpy and scipy via your operating system’s package manager, they should link to the BLAS library
installed in your system. If you install numpy and scipy via pip install numpy and pip install scipy,
make sure to have development headers for your BLAS library installed (e.g., the libopenblas-dev package
on Debian/Ubuntu) while running the installation command. Please refer to the numpy/scipy build instructions if in
doubt.

Stable NumpyDL release

NumpyDL 0.1 requires a more recent version of Theano than the one available on PyPI. To install a version that is
known to work, run the following command:

pip install -r https://github.com/oujago/NumpyDL/blob/master/requirements.txt

pip install npdl

If you do not use virtualenv, add --user to both commands to install into your home directory instead. To
upgrade from an earlier installation, add --upgrade.

Development installation

Alternatively, you can install NumpyDL from source, in a way that any changes to your local copy of the source tree
take effect without requiring a reinstall. This is often referred to as editable or development mode. Firstly, you will
need to obtain a copy of the source tree:

git clone https://github.com/oujago/NumpyDL.git

It will be cloned to a subdirectory called NumpyDL. Make sure to place it in some permanent location, as for an
editable installation, Python will import the module directly from this directory and not copy over the files. Enter the
directory and install the known good version of Theano:

cd NumpyDL
pip install -r requirements.txt

To install the NumpyDL package itself, in editable mode, run:

pip install --editable .

As always, add --user to install it to your home directory instead.

Optional: If you plan to contribute to NumpyDL, you will need to fork the NumpyDL repository on GitHub. This will
create a repository under your user account. Update your local clone to refer to the official repository as upstream,
and your personal fork as origin:

git remote rename origin upstream
git remote add origin https://github.com/<your-github-name>/NumpyDL.git

If you set up an SSH key, use the SSH clone URL instead: git@github.com:<your-github-name>/
NumpyDL.git.

4 Chapter 1. User Guide

http://www.scipy.org/scipylib/building/index.html
https://help.github.com/categories/ssh/


numpydl Documentation, Release 0.1.0

You can now use this installation to develop features and send us pull requests on GitHub, see development!

1.1. Installation 5



numpydl Documentation, Release 0.1.0

6 Chapter 1. User Guide



CHAPTER 2

API Reference

If you are looking for information on a specific function, class or method, this part of the documentation is for you.

npdl.activation

Non-linear activation functions for artificial neurons.

Activations

Sigmoid() Sigmoid activation function 𝜙(𝑥) = 1
1+𝑒−𝑥

Tanh() Tanh activation function 𝜙(𝑥) = tanh(𝑥)
ReLU () Rectify activation function 𝜙(𝑥) = max(0, 𝑥)
Linear() Linear activation function 𝜙(𝑥) = 𝑥

Softmax() Softmax activation function 𝜙(x)𝑗 = 𝑒x𝑗∑︀𝐾
𝑘=1 𝑒x𝑘

where 𝐾

is the total number of neurons in the layer.

Detailed description

class npdl.activation.Sigmoid
Sigmoid activation function 𝜙(𝑥) = 1

1+𝑒−𝑥

Parameters x : float32

The activation (the summed, weighted input of a neuron).

Returns float32 in [0, 1]

The output of the sigmoid function applied to the activation.

class npdl.activation.Tanh
Tanh activation function 𝜙(𝑥) = tanh(𝑥)

7



numpydl Documentation, Release 0.1.0

Parameters x : float32

The activation (the summed, weighted input of a neuron).

Returns float32 in [-1, 1]

The output of the tanh function applied to the activation.

class npdl.activation.ReLU
Rectify activation function 𝜙(𝑥) = max(0, 𝑥)

Parameters x : float32

The activation (the summed, weighted input of a neuron).

Returns float32

The output of the rectify function applied to the activation.

class npdl.activation.Linear
Linear activation function 𝜙(𝑥) = 𝑥

Parameters x : float32

The activation (the summed, weighted input of a neuron).

Returns float32

The output of the identity applied to the activation.

class npdl.activation.Softmax
Softmax activation function 𝜙(x)𝑗 = 𝑒x𝑗∑︀𝐾

𝑘=1 𝑒x𝑘
where 𝐾 is the total number of neurons in the layer. This

activation function gets applied row-wise.

Parameters x : float32

The activation (the summed, weighted input of a neuron).

Returns float32 where the sum of the row is 1 and each single value is in [0, 1]

The output of the softmax function applied to the activation.

npdl.initialization

Functions to create initializers for parameter variables.

Examples

>>> from npdl.layers import Dense
>>> from npdl.initialization import GlorotUniform
>>> l1 = Dense(n_out=300, n_in=100, init=GlorotUniform())

Initializers

Zero Initialize weights with zero value.
One Initialize weights with one value.
Uniform([scale]) Sample initial weights from the uniform distribution.

Continued on next page

8 Chapter 2. API Reference



numpydl Documentation, Release 0.1.0

Table 2.2 – continued from previous page
Normal([std, mean]) Sample initial weights from the Gaussian distribution.
Orthogonal([gain]) Intialize weights as Orthogonal matrix.

Detailed description

class npdl.initialization.Initializer
Base class for parameter tensor initializers.

The Initializer class represents a weight initializer used to initialize weight parameters in a neural network
layer. It should be subclassed when implementing new types of weight initializers.

call(size)
Sample should return a theano.tensor of size shape and data type theano.config.floatX.

Parameters size : tuple or int

Integer or tuple specifying the size of the returned matrix.

returns : theano.tensor

Matrix of size shape and dtype theano.config.floatX.

class npdl.initialization.Zero
Initialize weights with zero value.

class npdl.initialization.One
Initialize weights with one value.

class npdl.initialization.Normal(std=0.01, mean=0.0)
Sample initial weights from the Gaussian distribution.

Initial weight parameters are sampled from N(mean, std).

Parameters std : float

Std of initial parameters.

mean : float

Mean of initial parameters.

class npdl.initialization.Uniform(scale=0.05)
Sample initial weights from the uniform distribution.

Parameters are sampled from U(a, b).

Parameters scale : float or tuple

When std is None then range determines a, b. If range is a float the weights are sampled
from U(-range, range). If range is a tuple the weights are sampled from U(range[0],
range[1]).

class npdl.initialization.Orthogonal(gain=1.0)
Intialize weights as Orthogonal matrix.

Orthogonal matrix initialization [R2]. For n-dimensional shapes where n > 2, the n-1 trailing axes are flattened.
For convolutional layers, this corresponds to the fan-in, so this makes the initialization usable for both dense
and convolutional layers.

Parameters gain : float or ‘relu’

2.2. npdl.initialization 9



numpydl Documentation, Release 0.1.0

Scaling factor for the weights. Set this to 1.0 for linear and sigmoid units, to ‘relu’
or sqrt(2) for rectified linear units, and to sqrt(2/(1+alpha**2)) for leaky
rectified linear units with leakiness alpha. Other transfer functions may need different
factors.

References

[R2]

10 Chapter 2. API Reference



CHAPTER 3

Examples

This part provides examples for building deep neural networks.

11



numpydl Documentation, Release 0.1.0

12 Chapter 3. Examples



CHAPTER 4

Indices and tables

• genindex

• modindex

• search

13



numpydl Documentation, Release 0.1.0

14 Chapter 4. Indices and tables



Bibliography

[R2] Saxe, Andrew M., James L. McClelland, and Surya Ganguli. “Exact solutions to the nonlinear dynamics of
learning in deep linear neural networks.” arXiv preprint arXiv:1312.6120 (2013).

15



numpydl Documentation, Release 0.1.0

16 Bibliography



Python Module Index

n
npdl.activation, 7
npdl.initialization, 8

17



numpydl Documentation, Release 0.1.0

18 Python Module Index



Index

C
call() (npdl.initialization.Initializer method), 9

I
Initializer (class in npdl.initialization), 9

L
Linear (class in npdl.activation), 8

N
Normal (class in npdl.initialization), 9
npdl.activation (module), 7
npdl.initialization (module), 8

O
One (class in npdl.initialization), 9
Orthogonal (class in npdl.initialization), 9

R
ReLU (class in npdl.activation), 8

S
Sigmoid (class in npdl.activation), 7
Softmax (class in npdl.activation), 8

T
Tanh (class in npdl.activation), 7

U
Uniform (class in npdl.initialization), 9

Z
Zero (class in npdl.initialization), 9

19


	User Guide
	Installation

	API Reference
	npdl.activation
	npdl.initialization

	Examples
	Indices and tables
	Bibliography
	Python Module Index

