

Hi, NumpyDL

NumpyDL is a simple deep learning library based on pure Python/Numpy. NumpyDL
is a work in progress, input is welcome. The project is on
GitHub [https://github.com/oujago/NumpyDL].

The main features of NumpyDL are as follows:

	Pure in Numpy

	Native to Python

	Automatic differentiations are basically supported

	Commonly used models are provided: MLP, RNNs, LSTMs and CNNs

	API like Keras library

	Examples for several AI tasks

	Application for a toy chatbot

User Guides

The NumpyDL user guide explains how to install NumpyDL, how to build and train
neural networks using NumpyDL, and how to contribute to the library as a
developer.

	1. Installation
	1.1. Prerequisites

	1.2. Stable NumpyDL release

	1.3. Development installation

	2. Development
	2.1. Philosophy

	2.2. What to contribute

	2.3. How to contribute

Tutorials

This is the tutorials of Deep Learning.

	1. Activation
	1.1. What is activation function?

	1.2. Why need activation function?

	1.3. Commonly used activation functions

	1.4. What activation should I use?

	2. Initialization
	2.1. Introduction

	2.2. Xavier Initialization

	3. Objective
	3.1. What is the Objective Function?

	3.2. Visualizing the Objective function

	4. Optimizer
	4.1. Gradient descent variants

	4.2. Challenges

	4.3. Parallelizing and distributing SGD

	4.4. Additional strategies for optimizing SGD

	4.5. Conclusion

	5. Multilayer Perceptron
	5.1. Sigmoid function

	5.2. Back Propagation

	5.3. Example

	5.4. Code

	6. Convolution Neural Networks
	6.1. Introduction

	6.2. Back Propagation

	6.3. Visualizing Features

	6.4. Code

	7. Recurrent Neural Networks
	7.1. What is a Recurrent Neural Net?

	7.2. Simulating a Recurrent Neural Network

	7.3. Training a RNN - Backpropagation Through Time

	7.4. The Problems with Deep Backpropagation

	7.5. Long Short Term Memory

	7.6. Conclusions

API References

If you are looking for information on a specific function, class or
method, this part of the documentation is for you.

	npdl.layers
	Base Layers

	Core Layers

	Convolution Layers

	Embedding Layer

	Normalization Layer

	Pooling Layers

	Recurrent Layers

	Shape Layers

	npdl.activations
	Activations

	Detailed Description

	npdl.initializations
	Initializers

	Detailed Description

	npdl.objectives
	Examples

	Objectives

	Detailed Description

	npdl.optimizers
	Examples

	Optimizers

	Detailed Description

	npdl.model
	Detailed Description

	npdl.utils
	Data Utils

	Random Utils

Indices and tables

	Index

	Module Index

	Search Page

1. Installation

NumpyDL has a couple of prerequisites that need to be installed first, but it
is not very picky about versions. The most important package is Numpy [https://github.com/numpy/numpy]. At the same time, you should install some
other useful packages, such as scipy [https://github.com/scipy/scipy] and
scikit-learn [https://github.com/scikit-learn/scikit-learn]. Most importantly,
these packages are not required to install the specific version to fit the version
of NumpyDL you choose to install.

We strongly recommend you to install the Miniconda [https://conda.io/miniconda.html]
or a bigger installer Anaconda [https://www.continuum.io/downloads] which is a
leading open data science platform powered by Python and well integrated the efficient
scientific computing platform MKL [https://software.intel.com/en-us/forums/intel-math-kernel-library].

1.1. Prerequisites

1.1.1. Python + pip

NumpyDL currently requires Python 3.3 or higher to run. Please install Python via
the package manager of your operating system if it is not included already.

Python includes pip for installing additional modules that are not shipped
with your operating system, or shipped in an old version, and we will make use
of it below. We recommend installing these modules into your home directory
via --user, or into a virtual environment [http://www.dabapps.com/blog/introduction-to-pip-and-virtualenv-python/]
via virtualenv.

1.1.2. C compiler

Numpy/scipy require a C compiler if you install them via pip. On Linux,
the default compiler is usually“gcc“, and on Mac OS, it’s clang. On
Windows, we recommend you to install the Miniconda [https://conda.io/miniconda.html]
or Anaconda [https://www.continuum.io/downloads]. Again, please install them via the
package manager of your operating system.

1.1.3. numpy/scipy + BLAS

NumpyDL requires numpy of version 1.6.2 or above, and sometimes also requires
scipy 0.11 or above. Numpy/scipy rely on a BLAS library to provide fast linear
algebra routines. They will work fine without one, but a lot slower, so it is
worth getting this right (but this is less important if you plan to use a GPU).

If you install numpy and scipy via your operating system’s package manager,
they should link to the BLAS library installed in your system. If you install
numpy and scipy via pip install numpy and pip install scipy, make sure
to have development headers for your BLAS library installed (e.g., the
libopenblas-dev package on Debian/Ubuntu) while running the installation
command. Please refer to the numpy/scipy build instructions [http://www.scipy.org/scipylib/building/index.html] if in doubt.

1.2. Stable NumpyDL release

To install a version that is known to work, run the following command:

pip install -r https://github.com/oujago/NumpyDL/blob/master/requirements.txt

pip install npdl

If you do not use virtualenv, add --user to both commands to install
into your home directory instead. To upgrade from an earlier installation, add
--upgrade.

1.3. Development installation

1.3.1. install from source

Alternatively, you can install NumpyDL from source,
in a way that any changes to your local copy of the source tree take effect
without requiring a reinstall. This is often referred to as editable or
development mode. Firstly, you will need to obtain a copy of the source tree:

git clone https://github.com/oujago/NumpyDL.git

It will be cloned to a subdirectory called NumpyDL. Make sure to place it
in some permanent location, as for an editable installation, Python will
import the module directly from this directory and not copy over the files.
Enter the directory and install the known good version of Theano:

cd NumpyDL
pip install -r requirements.txt

To install the NumpyDL package itself, in editable mode, run:

pip install --editable

As always, add --user to install it to your home directory instead.

1.3.2. contribute

Optional: If you plan to contribute to NumpyDL, you will need to fork the
NumpyDL repository on GitHub. This will create a repository under your user
account. Update your local clone to refer to the official repository as
upstream, and your personal fork as origin:

git remote rename origin upstream
git remote add origin https://github.com/<your-github-name>/NumpyDL.git

If you set up an SSH key [https://help.github.com/categories/ssh/], use the
SSH clone URL instead: git@github.com:<your-github-name>/NumpyDL.git.

You can now use this installation to develop features and send us pull requests
on GitHub, see Development!

2. Development

The NumpyDL project is started by Chao-Ming Wang [https://oujago.github.io/about.html]
in February 2017. It is developed by a core team of five people:
Chao-Ming Wang [https://oujago.github.io/about.html], Jiao-Mei Liu, Shu-Ting Kang,
Xiao-Xuan Cui, Jin-Ze Li on Github: https://github.com/oujago/NumpyDL . The goal of
NumpyDL is making deep learning easy to learn and easy to use in native Numpy.

As an open-source project, we highly welcome contributions! Every bit helps and will
be credited!

2.1. Philosophy

The development of NumpyDl is guided by a number of design goals:

	Simplicity: Be easy to use, easy to understand and easy to extend, to
facilitate use in research. Interfaces should be kept small, with as few
classes and methods as possible. Every added abstraction and feature
should be carefully scrutinized, to determine whether the added complexity
is justified.

	Transparency: Native to Numpy, directly process and return Python/Numpy
data types. Do not rely on the functionality of Theano, Tensorflow or any
such deep learning frameworks.

	Modularity: Allow all parts (layers, regularizers, optimizers, …) to be
used independently of NumpyDL. Make it easy to use components in isolation
or in conjunction with other frameworks.

	Focus: “Do one thing and do it well”. Do not try to provide a library
for everything to do with deep learning.

2.2. What to contribute

2.2.1. Give feedback

To send us general feedback, questions or ideas for improvement, please post on
issue tracker on GitHub [https://github.com/oujago/NumpyDL/issues]. Or, you can directly e-mail to Chao-Ming Wang’s Email.

If you have a very concrete feature proposal, add it to the issue tracker on
GitHub [https://github.com/oujago/NumpyDL/issues]:

	Explain how it would work, and link to a scientific paper if applicable.

	Keep the scope as narrow as possible, to make it easier to implement.

2.2.2. Fix bugs

Look through the GitHub issues for bug reports. Anything tagged with “bug” is
open to whoever wants to implement it. If you discover a bug in NumpyDL you can
fix yourself, by all means feel free to just implement a fix and not report it
first.

2.2.3. Implement features

Look through the GitHub issues for feature proposals. Anything tagged with
“feature” or “enhancement” is open to whoever wants to implement it. If you
have a feature in mind you want to implement yourself, please note that Lasagne
has a fairly narrow focus and we strictly follow a set of design
principles, so we cannot guarantee upfront that your code
will be included. Please do not hesitate to just propose your idea in a GitHub
issue first, so we can discuss it and/or guide you through the implementation.

2.2.4. Write documentation

Whenever you find something not explained well, misleading, glossed over or
just wrong, please update it! The Edit on GitHub link on the top right of
every documentation page and the [source] link for every documented entity
in the API reference will help you to quickly locate the origin of any text.

2.2.5. Write tutorial

How to combine our Numpy code with live examples and detailed explanations
about deep learning is NumpyDL’s ultimate goals. So, please contribute your
good ideas about how to make good tutorials.

2.3. How to contribute

2.3.1. Edit on GitHub

As a very easy way of just fixing issues in the documentation, use the Edit
on GitHub link on the top right of a documentation page or the [source] link
of an entity in the API reference to open the corresponding source file in
GitHub, then click the Edit this file link to edit the file in your browser
and send us a Pull Request. All you need for this is a free GitHub account.

For any more substantial changes, please follow the steps below to setup
NumpyDL for development.

2.3.2. Development setup

First, follow the instructions for performing a development installation of
NumpyDL (including forking on GitHub): Development installation

To be able to run the tests and build the documentation locally, install
additional requirements with: pip install -r requirements-dev.txt (adding
--user if you want to install to your home directory instead).

2.3.3. Documentation

The documentation is generated with Sphinx [http://sphinx-doc.org]. To
build it locally, run the following commands:

python setup.py install
cd docs
make html

Afterwards, open docs/_build/html/index.html to view the documentation as
it would appear on readthedocs [http://numpydl.readthedocs.org/]. If you
changed a lot and seem to get misleading error messages or warnings, run
make clean html to force Sphinx to recreate all files from scratch.

When writing docstrings, follow existing documentation as much as possible to
ensure consistency throughout the library. For additional information on the
syntax and conventions used, please refer to the following documents:

	reStructuredText Primer [http://sphinx-doc.org/rest.html]

	Sphinx reST markup constructs [http://sphinx-doc.org/markup/index.html]

	A Guide to NumPy/SciPy Documentation [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt]

2.3.4. Testing

NumpyDL has a code coverage of 100%, which has proven very helpful in the past,
but also creates some duties:

	Whenever you change any code, you should test whether it breaks existing
features by just running the test suite. The test suite will also be run by
Travis [https://travis-ci.org/] for any Pull Request to NumpyDL.

	Any code you add needs to be accompanied by tests ensuring that nobody else
breaks it in future. Coveralls [https://coveralls.io/] will check whether
the code coverage stays at 100% for any Pull Request to NumpyDL.

	Every bug you fix indicates a missing test case, so a proposed bug fix should
come with a new test that fails without your fix.

To run the full test suite, just do

py.test

Testing will take over several minutes for running for there are example testing.
It will end with a code coverage report specifying which code lines are not
covered by tests, if any. Furthermore, it will list any failed tests, and
failed PEP8 [https://www.python.org/dev/peps/pep-0008/] checks.

To only run tests matching a certain name pattern, use the -k command line
switch, e.g., -k pool will run the pooling layer tests only.

To land in a pdb debug prompt on a failure to inspect it more closely, use
the --pdb switch.

Finally, for a loop-on-failing mode, do pip install pytest-xdist and run
py.test -f. This will pause after the run, wait for any source file to
change and run all previously failing tests again.

2.3.5. Sending Pull Requests

When you’re satisfied with your addition, the tests pass and the documentation
looks good without any markup errors, commit your changes to a new branch, push
that branch to your fork and send us a Pull Request via GitHub’s web interface.

All these steps are nicely explained on GitHub: https://guides.github.com/introduction/flow/

When filing your Pull Request, please include a description of what it does, to
help us reviewing it. If it is fixing an open issue, say, issue #123, add
Fixes #123, Resolves #123 or Closes #123 to the description text, so
GitHub will close it when your request is merged.

1. Activation

1.1. What is activation function?

In computational networks, the activation function of a node defines the output of
that node given an input or set of inputs. In biologically inspired neural networks, the
activation function is usually an abstraction representing the rate of action potential
firing in the cell.

[image: ../_images/act_0.png]

1.2. Why need activation function?

Neural networks compose several functions in layers: the output of a previous layer
is the input to the next layer. If you compose linear functions, these functions are all linear.
So the result of stacking several linear functions together is a linear function. Using a
nonlinear function makes the map from the input to the output nonlinear.

For example, a ReLU function’s output is either 0 or positive. If the unit is 0, it is effectively
“off,” so the inputs to the unit are not propagated forward from that function. If the unit is on,
the input data is reflected in subsequent layers through that unit. ReLU itself is not linear,
and neither is the composition of several layers of several ReLU functions. So the mapping from
inputs to classification outcomes is not linear either.

Without activation function many layers would be equivalent to a single layer, as each layer
(without an activation function) can be represented by a matrix and a product of many matrices is still a matrix:

\[M = M_1 M_2 \cdots M_n\]

1.3. Commonly used activation functions

Every activation function (or non-linearity) takes a single number and performs a
certain fixed mathematical operation on it. There are several activation functions
you may encounter in practice:

1.3.1. Sigmoid

[image: ../_images/act_1.png]
Sigmoid non-linearity squashes real numbers to range between \([0,1]\).

The sigmoid non-linearity has the mathematical form \(σ(x)=1/(1 + e ^ {−x})\) and is shown in the
image above. It takes a real-valued number and “squashes” it into range between 0 and 1.
In particular, large negative numbers become 0 and large positive numbers become 1. The
sigmoid function has seen frequent use historically since it has a nice interpretation as
the firing rate of a neuron: from not firing at all (0) to fully-saturated firing at an
assumed maximum frequency (1). In practice, the sigmoid non-linearity has recently fallen
out of favor and it is rarely ever used. It has two major drawbacks:

	Sigmoids saturate and kill gradients. A very undesirable property of the sigmoid neuron
is that when the neuron’s activation saturates at either tail of 0 or 1, the gradient at
these regions is almost zero. Recall that during backpropagation, this (local) gradient
will be multiplied to the gradient of this gate’s output for the whole objective. Therefore,
if the local gradient is very small, it will effectively “kill” the gradient and almost no
signal will flow through the neuron to its weights and recursively to its data. Additionally,
one must pay extra caution when initializing the weights of sigmoid neurons to prevent
saturation. For example, if the initial weights are too large then most neurons would become
saturated and the network will barely learn.

	Sigmoid outputs are not zero-centered. This is undesirable since neurons in later layers
of processing in a Neural Network (more on this soon) would be receiving data that is not
zero-centered. This has implications on the dynamics during gradient descent, because if the
data coming into a neuron is always positive (e.g. \(x > 0\) elementwise in \(f = w ^ T x + b\))),
then the gradient on the weights \(w\) will during backpropagation
become either all be positive, or all negative (depending on the gradient of the whole
expression \(f\)). This could introduce undesirable zig-zagging dynamics in the gradient
updates for the weights. However, notice that once these gradients are added up across a batch
of data the final update for the weights can have variable signs, somewhat mitigating this issue.
Therefore, this is an inconvenience but it has less severe consequences compared to the saturated
activation problem above.

1.3.2. Tangent

[image: ../_images/act_2.png]
The tanh non-linearity squashes real numbers to range between \([-1,1]\).

The tanh non-linearity is shown on the image above. It squashes a real-valued number to the
range \([-1, 1]\). Like the sigmoid neuron, its activations saturate, but unlike
the sigmoid neuron its output is zero-centered. Therefore, in practice the tanh non-linearity is
always preferred to the sigmoid nonlinearity. Also note that the tanh neuron is simply a scaled
sigmoid neuron, in particular the following holds:

\[tanh(x) = 2σ(2x) − 1.\]

1.3.3. ReLU

[image: ../_images/act_3.png]
Rectified Linear Unit (ReLU) activation function, which is zero when \(x < 0\) and
then linear with slope \(1\) when \(x > 0\).

The Rectified Linear Unit has become very popular in the last few years. It computes the
function

\[f(x)=max(0,x)\]

In other words, the activation is simply thresholded at zero (see image above). There are
several pros and cons to using the ReLUs:

	(+) It was found to greatly accelerate (e.g. a factor of 6 in Krizhevsky et al 1.)
the convergence of stochastic gradient descent compared to the sigmoid/tanh functions.
It is argued that this is due to its linear, non-saturating form.

	(+) Compared to tanh/sigmoid neurons that involve expensive operations (exponentials,
etc.), the ReLU can be implemented by simply thresholding a matrix of activations at zero.

	(-) Unfortunately, ReLU units can be fragile during training and can “die”. For example,
a large gradient flowing through a ReLU neuron could cause the weights to update in such
a way that the neuron will never activate on any datapoint again. If this happens, then
the gradient flowing through the unit will forever be zero from that point on. That is,
the ReLU units can irreversibly die during training since they can get knocked off the
data manifold. For example, you may find that as much as 40% of your network can be
“dead” (i.e. neurons that never activate across the entire training dataset) if the
learning rate is set too high. With a proper setting of the learning rate this is less
frequently an issue.

[image: ../_images/act_4.png]
A plot from Krizhevsky et al. 1 paper indicating the 6x improvement in convergence
with the ReLU unit compared to the tanh unit.

1.3.4. Leaky ReLU

[image: ../_images/act_5.png]

Leaky ReLUs are one attempt to fix the “dying ReLU” problem. Instead of the function being
zero when \(x < 0\), a leaky ReLU will instead have a small negative slope (of \(0.01\),
or so). That is, the function computes

\[\begin{split}f(x)= \left \{ \begin{aligned} αx & & x < 0 \\ x & & x >= 0 \\ \end{aligned} \right\end{split}\]

where \(α\) is a small constant. Some people report success with this form of activation
function, but the results are not always consistent. The slope in the negative region can also
be made into a parameter of each neuron, as seen in PReLU neurons, introduced in
Delving Deep into Rectifiers, by Kaiming He et al., 2015 2. However, the consistency of
the benefit across tasks is presently unclear.

1.3.5. Maxout

Other types of units have been proposed that do not have the functional form

\[f(wTx+b)\]

where a non-linearity is applied on the dot product between the weights and the data. One relatively
popular choice is the Maxout neuron (introduced recently by Goodfellow et al 3.) that generalizes
the ReLU and its leaky version. The Maxout neuron computes the function

\[max(w ^ T _ 1 x+b_1,w ^ T _ 2 x+b_2)\]

Notice that both ReLU and Leaky ReLU are a special case of this form (for example, for ReLU we
have \(w1,b1=0\)). The Maxout neuron therefore enjoys all the benefits of a ReLU unit (linear
regime of operation, no saturation) and does not have its drawbacks (dying ReLU). However, unlike
the ReLU neurons it doubles the number of parameters for every single neuron, leading to a high total
number of parameters.

This concludes our discussion of the most common types of neurons and their activation functions.
As a last comment, it is very rare to mix and match different types of neurons in the same network,
even though there is no fundamental problem with doing so.

1.4. What activation should I use?

Use the ReLU non-linearity, be careful with your learning rates and possibly monitor the fraction
of “dead” units in a network. If this concerns you, give Leaky ReLU or Maxout a try. Never use
sigmoid. Try tanh, but expect it to work worse than ReLU/Maxout.

	1(1,2)

	Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton.
“Imagenet classification with deep convolutional neural networks.”
Advances in neural information processing systems. 2012.

	2

	He, Kaiming, et al. “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification.” Proceedings of
the IEEE international conference on computer vision. 2015.

	3

	Goodfellow, Ian J., et al. “Maxout networks.” arXiv preprint arXiv:1302.4389 (2013).

2. Initialization

2.1. Introduction

As we all know, the solution to a non-convex optimization algorithm (like stochastic gradient descent)
depends on the initial values of the parameters. This post is about choosing initialization parameters
for deep networks and how it affects the convergence. We will also discuss the related topic of
vanishing gradients.

First, let’s go back to the time of sigmoidal activation functions and initialization of parameters
using IID Gaussian or uniform distributions with fairly arbitrarily set variances. Building deep
networks was difficult because of exploding or vanishing activations and gradients. Let’s take
activations first: If all your parameters are too small, the variance of your activations will drop in
each layer. This is a problem if your activation function is sigmoidal, since it is approximately
linear close to 0. That is, you gradually lose your non-linearity, which means there is no benefit to
having multiple layers. If, on the other hand, your activations become larger and larger, then your
activations will saturate and become meaningless, with gradients approaching 0.

[image: ../_images/init_0.svg]

Let us consider one layer and forget about the bias. Note that the following analysis and conclusion
is taken from Glorot and Bengio 1. Consider a weight matrix \(W \in R^{m×n}\), where each element
was drawn from an IID Guassian with variance \(Var(W)\). Note that we are a bit abusive with notation
letting \(W\) denote both a matrix and a univariate random variable. We also assume there is no
correlation between our input and our weights and both are zero-mean. If we consider one filter (row)
in \(W\), say \(W\) (a random vector), then the variance of the output signal over the input
signal is:

\[\frac{Var(W^{T}x)}{Var(x)} =
\frac{\sum_{n}^{m}Var(W_{n}x_{n})}{Var(x)} =
\frac{nVar(W)Var(x)}{Var(x)} =
nVar(W)\]

As we build a deep network, we want the variance of the signal going forward in the network to remain
the same, thus it would be advantageous if \(nVar(W)=1\). The same argument can be made for the
gradients, the signal going backward in the network, and the conclusion is that we would also
like \(mVar(W)=1\). Unless \(n=m\), it is impossible to sastify both of these conditions. In
practice, it works well if both are approximately satisfied. One thing that has never been clear to me
is why it is only necessary to satisfy these conditions when picking the initialization values of \(W\).
It would seem that we have no guarantee that the conditions will remain true as the network is trained.

Nevertheless, this Xavier initialization (after Glorot’s first name) is a neat trick that works well
in practice. However, along came rectified linear units (ReLU), a non-linearity that is scale-invariant
around 0 and does not saturate at large input values. This seemingly solved both of the problems the
sigmoid function had; or were they just alleviated? I am unsure of how widely used Xavier initialization
is, but if it is not, perhaps it is because ReLU seemingly eliminated this problem.

However, take the most competative network as of recently, VGG 2. They do not use this kind of
initialization, although they report that it was tricky to get their networks to converge. They say that
they first trained their most shallow architecture and then used that to help initialize the second one,
and so forth. They presented 6 networks, so it seems like an awfully complicated training process to
get to the deepest one.

A recent paper by He et al. 3 presents a pretty straightforward generalization of ReLU and Leaky ReLU.
What is more interesting is their emphasis on the benefits of Xavier initialization even for ReLU. They
re-did the derivations for ReLUs and discovered that the conditions were the same up to a factor 2.
The difficulty Simonyan and Zisserman had training VGG is apparently avoidable, simply by using Xavier
intialization (or better yet the ReLU adjusted version). Using this technique, He et al. reportedly trained
a whopping 30-layer deep network to convergence in one go.

Another recent paper tackling the signal scaling problem is by Ioffe and Szegedy 4. They call the change
in scale internal covariate shift and claim this forces learning rates to be unnecessarily small. They
suggest that if all layers have the same scale and remain so throughout training, a much higher learning
rate becomes practically viable. You cannot just standardize the signals, since you would lose expressive
power (the bias disappears and in the case of sigmoids we would be constrained to the linear regime).
They solve this by re-introducing two parameters per layer, scaling and bias, added again after
standardization. The training reportedly becomes about 6 times faster and they present state-of-the-art
results on ImageNet. However, I’m not certain this is the solution that will stick.

I reckon we will see a lot more work on this frontier in the next few years. Especially since it also
relates to the – right now wildly popular – Recurrent Neural Network (RNN), which connects output signals
back as inputs. The way you train such network is that you unroll the time axis, treating the result as an
extremely deep feedforward network. This greatly exacerbates the vanishing gradient problem. A popular
solution, called Long Short-Term Memory (LSTM), is to introduce memory cells, which are a type of teleport
that allows a signal to jump ahead many time steps. This means that the gradient is retained for all those
time steps and can be propagated back to a much earlier time without vanishing.

2.2. Xavier Initialization

2.2.1. Why’s Xavier initialization important?

In short, it helps signals reach deep into the network.

	If the weights in a network start too small, then the signal shrinks as it passes through each layer until
it’s too tiny to be useful.

	If the weights in a network start too large, then the signal grows as it passes through each layer until
it’s too massive to be useful.

Xavier initialization makes sure the weights are ‘just right’, keeping the signal in a reasonable range of
values through many layers.

To go any further than this, you’re going to need a small amount of statistics - specifically you need to
know about random distributions and their variance.

2.2.2. What’s Xavier initialization?

For specific implementation, it’s initializing the weights in your network by drawing them from a distribution
with zero mean and a specific variance,

\[Var(W) = \frac{1}{n_{in}}\]

where \(W\) is the initialization distribution for the neuron in question, and \(n_{in}\) is the
number of neurons feeding into it. The distribution used is typically Gaussian or uniform.

It’s worth mentioning that Glorot & Bengio’s paper 1 originally recommended using:

\[Var(W) = \frac{2}{n_{in} + n_{out}}\]

where \(n_{out}\) is the number of neurons the result is fed to.

2.2.3. Where did those formulas come from?

Suppose we have an input \(X\) with \(n\) components and a linear neuron with random weights \(W\)
that spits out a number \(Y\). What’s the variance of \(Y\)? Well, we can write

\[Y=W_1 X_1+W_2 X_2+⋯+W_n X_n\]

And from Wikipedia 5 we can work out that \(W_iX_i\) is going to have variance

\[Var(W_i X_i)=E[X_i]^2Var(W_i)+E[W_i]^2Var(X_i)+Var(W_i)Var(i_i)\]

Now if our inputs and weights both have mean \(0\), that simplifies to

\[Var(W_i X_i)=Var(W_i)Var(X_i)\]

Then if we make a further assumption that the \(X_i\) and \(W_i\) are all independent and identically
distributed, we can work out that the variance of \(Y\) is 6

\[Var(Y)=Var(W_1 X_1+W_2 X_2+⋯+W_n X_n)=nVar(W_i)Var(X_i)\]

Or in words: the variance of the output is the variance of the input, but scaled by \(nVar(W_i)\). So if
we want the variance of the input and output to be the same, that means \(nVar(W_i)\) should be 1. Which
means the variance of the weights should be

\[Var(W_i)= \frac{1}{n}= \frac{1}{n_{in}}\]

Voila. There’s your Xavier initialization.

Glorot & Bengio’s formula needs a tiny bit more work. If you go through the same steps for the backpropagated
signal, you find that you need

\[Var(W_i)=\frac{1}{n_{out}}\]

to keep the variance of the input gradient & the output gradient the same. These two constraints can only be
satisfied simultaneously if \(n_{in}=n_{out}\), so as a compromise, Glorot & Bengio take the average of
the two:

\[Var(W_i)=\frac{2}{n_{in}+n_{out}}\]

Caffe authors used the \(n_{in}\)-only variant. The two possibilities that come to mind are:

	that preserving the forward-propagated signal is much more important than preserving the back-propagated
one.

	that for implementation reasons, it’s a pain to find out how many neurons in the next layer consume the
output of the current one.

It is. But it works. Xavier initialization was one of the big enablers of the move away from per-layer
generative pre-training.

	1(1,2)

	X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural
networks,” in International conference on artificial intelligence and statistics, 2010, pp.
249–256.

	2

	K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” arXiv preprint arXiv:1409.1556, 2014.

	3

	K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification,” arXiv:1502.01852 [cs], Feb. 2015.

	4

	S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift,” arXiv:1502.03167 [cs], Feb. 2015.

	5

	https://en.wikipedia.org/wiki/Variance#Product_of_independent_variables

	6

	https://en.wikipedia.org/wiki/Variance#Sum_of_uncorrelated_variables_.28Bienaym.C3.A9_formula.29

3. Objective

3.1. What is the Objective Function?

The objective of a linear programming problem will be to maximize or to minimize
some numerical value. This value may be the expected net present value of a project
or a forest property; or it may be the cost of a project; it could also be the amount
of wood produced, the expected number of visitor-days at a park, the number of
endangered species that will be saved, or the amount of a particular type of habitat
to be maintained. Linear programming is an extremely general technique, and its
applications are limited mainly by our imaginations and our ingenuity.

The objective function indicates how much each variable contributes to the value to
be optimized in the problem. The objective function takes the following general form:

\[maximize & or & minimize & Z = \sum_{i=1}^{n}c_i X_i\]

where

	\(c_i\) = the objective function coefficient corresponding to the ith variable

	\(X_i\) = the \(i\)-th decision variable.

	The summation notation used here was discussed in the section above on linear
functions. The summation notation for the objective function can be expanded out as
follows: \(Z = \sum_{i=1}^{n} c_i X_i = c_1 X_1 + c_2 X_2 + \cdots + c_n X_n\)

The coefficients of the objective function indicate the contribution to the value of
the objective function of one unit of the corresponding variable. For example, if the
objective function is to maximize the present value of a project, and \(X_i\) is
the \(i\)-th possible activity in the project, then \(c_i\) (the objective
function coefficient corresponding to \(X_i\)) gives the net present value generated
by one unit of activity \(i\). As another example, if the problem is to minimize
the cost of achieving some goal, \(X_i\) might be the amount of resource \(i\)
used in achieving the goal. In this case, \(c_i\) would be the cost of using one
unit of resource \(i\).

Note that the way the general objective function above has been written implies that
each variable has a coefficient in the objective function. Of course, some variables
may not contribute to the objective function. In this case, you can either think of
the variable as having a coefficient of zero, or you can think of the variable as
not being in the objective function at all.

3.2. Visualizing the Objective function

The loss functions we’ll look at in this class are usually defined over very
high-dimensional spaces (e.g. in CIFAR-10 a linear classifier weight matrix is of
size \([10 x 3073]\) for a total of 30,730 parameters), making them difficult
to visualize. However, we can still gain some intuitions about one by slicing
through the high-dimensional space along rays (1 dimension), or along planes (2
dimensions). For example, we can generate a random weight matrix \(W\) (which
corresponds to a single point in the space), then march along a ray and record
the loss function value along the way. That is, we can generate a random
direction \(W_1\) and compute the loss along this direction by
evaluating \(L(W+aW_1)\) for different values of \(a\). This process
generates a simple plot with the value of \(a\) as the \(x\)-axis and
the value of the loss function as the \(y\)-axis. We can also carry out the
same procedure with two dimensions by evaluating the loss \(L(W+aW_1+bW_2)\)
as we vary \(a,b\). In a plot, \(a,b\) could then correspond to the \(x\)-axis
and the \(y\)-axis, and the value of the loss function can be visualized with a color:

[image: ../_images/init_1.png]
[image: ../_images/init_2.jpg]
[image: ../_images/init_3.jpg]
Loss function landscape for the Multiclass SVM (without regularization) for
one single example (left,middle) and for a hundred examples (right) in CIFAR-10.
Left: one-dimensional loss by only varying a. Middle, Right: two-dimensional
loss slice, Blue = low loss, Red = high loss. Notice the piecewise-linear structure of
the loss function. The losses for multiple examples are combined with average, so
the bowl shape on the right is the average of many piece-wise linear bowls (such as
the one in the middle).

We can explain the piecewise-linear structure of the loss function by examining the math.
For a single example we have:

\[L_i=\sum_{j \neq y_i}[max(0,w_j^T x_i−w_{y_i}^T x_i+1)]\]

It is clear from the equation that the data loss for each example is a sum of (zero-thresholded
due to the \(max(0,−)\) function) linear functions of \(W\). Moreover, each row
of \(W\) (i.e. \(w_j\)) sometimes has a positive sign in front of it (when it
corresponds to a wrong class for an example), and sometimes a negative sign (when it
corresponds to the correct class for that example). To make this more explicit,
consider a simple dataset that contains three 1-dimensional points and three classes.
The full SVM loss (without regularization) becomes:

\[\begin{split}& L_0=max(0,w_1^T x_0 − w_0^T x_0 + 1)+max(0,w_2^T x_0−w_0^T x^0+1) \\
& L_1 = max(0,w_0^T x_1−w_1^T x_1+1)+max(0,w_2^T x_1−w_1^T x_1+1) \\
& L_2 = max(0,w_0^T x_2−w_2^T x_2+1)+max(0,w_1^T x_2−w_2^T x_2+1) \\
& L = (L_0+L_1+L_2)/3\end{split}\]

Since these examples are 1-dimensional, the data \(x_i\) and weights \(w_j\) are
numbers. Looking at, for instance, \(w_0\), some terms above are linear functions
of \(w_0\) and each is clamped at zero. We can visualize this as follows:

[image: ../_images/init_4.png]
1-dimensional illustration of the data loss. The \(x\)-axis is a single weight and
the \(y\)-axis is the loss. The data loss is a sum of multiple terms, each of which
is either independent of a particular weight, or a linear function of it that is
thresholded at zero. The full SVM data loss is a 30,730-dimensional version of this shape.

As an aside, you may have guessed from its bowl-shaped appearance that the SVM cost function
is an example of a convex function 1. There is a large amount of literature devoted to
efficiently minimizing these types of functions, and you can also take a Stanford class on
the topic (convex optimization 2). Once we extend our score functions ff to Neural Networks
our objective functions will become non-convex, and the visualizations above will not feature
bowls but complex, bumpy terrains.

Non-differentiable loss functions. As a technical note, you can also see that the kinks in
the loss function (due to the max operation) technically make the loss function non-differentiable
because at these kinks the gradient is not defined. However, the subgradient still exists and
is commonly used instead. In this class will use the terms subgradient 3 and gradient interchangeably.

	1

	https://en.wikipedia.org/wiki/Convex_function

	2

	http://stanford.edu/~boyd/cvxbook/

	3

	https://en.wikipedia.org/wiki/Subderivative

4. Optimizer

Gradient descent is one of the most popular algorithms to perform optimization and by
far the most common way to optimize neural networks. At the same time, every state-of-the-art
Deep Learning library contains implementations of various algorithms to optimize gradient
descent (e.g. lasagne’s 25, caffe’s 26, and keras’ 27 documentation). These algorithms,
however, are often used as black-box optimizers, as practical explanations of their strengths
and weaknesses are hard to come by.

This blog post aims at providing you with intuitions towards the behaviour of different
algorithms for optimizing gradient descent that will help you put them to use. We are first
going to look at the different variants of gradient descent. We will then briefly summarize
challenges during training. Subsequently, we will introduce the most common optimization
algorithms by showing their motivation to resolve these challenges and how this leads to
the derivation of their update rules. We will also take a short look at algorithms and
architectures to optimize gradient descent in a parallel and distributed setting. Finally,
we will consider additional strategies that are helpful for optimizing gradient descent.

Gradient descent is a way to minimize an objective function \(J(\theta)\) parameterized
by a model’s parameters \(\theta \in R^d\) by updating the parameters in the opposite
direction of the gradient of the objective function \(\bigtriangledown_{\theta}J(\theta)\)
w.r.t. to the parameters. The learning rate ηη determines the size of the steps we take to
reach a (local) minimum. In other words, we follow the direction of the slope of the surface
created by the objective function downhill until we reach a valley. If you are unfamiliar
with gradient descent, you can find a good introduction on optimizing neural networks here 28.

4.1. Gradient descent variants

There are three variants of gradient descent, which differ in how much data we use to compute
the gradient of the objective function. Depending on the amount of data, we make a trade-off
between the accuracy of the parameter update and the time it takes to perform an update.

4.1.1. Batch gradient descent

Vanilla gradient descent, aka batch gradient descent, computes the gradient of the cost
function w.r.t. to the parameters \(\theta\) for the entire training dataset:

\[\theta = \theta - \eta \ast \bigtriangledown_{\theta} J(\theta)\]

As we need to calculate the gradients for the whole dataset to perform just one update,
batch gradient descent can be very slow and is intractable for datasets that don’t fit in
memory. Batch gradient descent also doesn’t allow us to update our model online, i.e.
with new examples on-the-fly.

In code, batch gradient descent looks something like this:

for i in range(nb_epochs):
 params_grad = evaluate_gradient(loss_function, data, params)
 params = params - learning_rate * params_grad

For a pre-defined number of epochs, we first compute the gradient vector params_grad of
the loss function for the whole dataset w.r.t. our parameter vector params. Note that
state-of-the-art deep learning libraries provide automatic differentiation that efficiently
computes the gradient w.r.t. some parameters. If you derive the gradients yourself,
then gradient checking is a good idea. (See here for some great tips on how to check gradients
properly.)

We then update our parameters in the direction of the gradients with the learning rate
determining how big of an update we perform. Batch gradient descent is guaranteed to converge
to the global minimum for convex error surfaces and to a local minimum for non-convex surfaces.

4.1.2. Stochastic gradient descent

Stochastic gradient descent (SGD) in contrast performs a parameter update for each training
example \(x^{(i)}\) and label \(y^{(i)}\):

\[\theta = \theta - \eta \ast \bigtriangledown_{\theta}J(\theta;x^{(i)};y^{(i)})\]

Batch gradient descent performs redundant computations for large datasets, as it recomputes
gradients for similar examples before each parameter update. SGD does away with this redundancy
by performing one update at a time. It is therefore usually much faster and can also be used to learn online.

SGD performs frequent updates with a high variance that cause the objective function to
fluctuate heavily as in Image 1.

[image: ../_images/optimizer_1.png]
Image 1: SGD fluctuation.

While batch gradient descent converges to the minimum of the basin the parameters are placed
in, SGD’s fluctuation, on the one hand, enables it to jump to new and potentially better
local minima. On the other hand, this ultimately complicates convergence to the exact minimum,
as SGD will keep overshooting. However, it has been shown that when we slowly decrease the
learning rate, SGD shows the same convergence behaviour as batch gradient descent, almost
certainly converging to a local or the global minimum for non-convex and convex optimization
respectively.

Its code fragment simply adds a loop over the training examples and evaluates the gradient
w.r.t. each example. Note that we shuffle the training data at every epoch as explained
in Shuffling and Curriculum Learning.

for i in range(nb_epochs):
 np.random.shuffle(data)
 for example in data:
 params_grad = evaluate_gradient(loss_function, example, params)
 params = params - learning_rate * params_grad

4.1.3. Mini-batch gradient descent

Mini-batch gradient descent finally takes the best of both worlds and performs an update
for every mini-batch of \(n\) training examples:

\[\theta = \theta - \eta \ast \bigtriangledown_{\theta}J(\theta;x^{(i:i+n)};y^{(i:i+n)})\]

This way, it a) reduces the variance of the parameter updates, which can lead to more stable
convergence; and b) can make use of highly optimized matrix optimizations common to
state-of-the-art deep learning libraries that make computing the gradient w.r.t. a
mini-batch very efficient. Common mini-batch sizes range between 50 and 256, but can
vary for different applications. Mini-batch gradient descent is typically the algorithm of
choice when training a neural network and the term SGD usually is employed also when
mini-batches are used. Note: In modifications of SGD in the rest of this post, we leave
out the parameters \(x^{(i:i+n)};y^{(i:i+n)}\) for simplicity.

In code, instead of iterating over examples, we now iterate over mini-batches of size 50:

for i in range(nb_epochs):
 np.random.shuffle(data)
 for batch in get_batches(data, batch_size=50):
 params_grad = evaluate_gradient(loss_function, batch, params)
 params = params - learning_rate * params_grad

4.2. Challenges

Vanilla mini-batch gradient descent, however, does not guarantee good convergence,
but offers a few challenges that need to be addressed:

	Choosing a proper learning rate can be difficult. A learning rate that is too small
leads to painfully slow convergence, while a learning rate that is too large can hinder
convergence and cause the loss function to fluctuate around the minimum or even to diverge.

	Learning rate schedules 11 try to adjust the learning rate during training by e.g.
annealing, i.e. reducing the learning rate according to a pre-defined schedule or when
the change in objective between epochs falls below a threshold. These schedules and
thresholds, however, have to be defined in advance and are thus unable to adapt to a
dataset’s characteristics 10.

	Additionally, the same learning rate applies to all parameter updates. If our data
is sparse and our features have very different frequencies, we might not want to
update all of them to the same extent, but perform a larger update for rarely occurring
features.

	Another key challenge of minimizing highly non-convex error functions common for
neural networks is avoiding getting trapped in their numerous suboptimal local minima.
Dauphin et al. 19 argue that the difficulty arises in fact not from local minima but
from saddle points, i.e. points where one dimension slopes up and another slopes down.
These saddle points are usually surrounded by a plateau of the same error, which makes
it notoriously hard for SGD to escape, as the gradient is close to zero in all dimensions.

4.2.1. Gradient descent optimization algorithms

In the following, we will outline some algorithms that are widely used by the deep learning
community to deal with the aforementioned challenges. We will not discuss algorithms that
are infeasible to compute in practice for high-dimensional data sets, e.g. second-order
methods such as Newton’s method 29.

4.2.2. Momentum

SGD has trouble navigating ravines, i.e. areas where the surface curves much more steeply
in one dimension than in another 1, which are common around local optima. In these scenarios,
SGD oscillates across the slopes of the ravine while only making hesitant progress along
the bottom towards the local optimum as in Image 2.

[image: ../_images/optimizer_2.gif]
Image 2: SGD without momentum

[image: ../_images/optimizer_3.gif]
Image 3: SGD with momentum

Momentum 2 is a method that helps accelerate SGD in the relevant direction and dampens
oscillations as can be seen in Image 3. It does this by adding a fraction \(\gamma\) of
the update vector of the past time step to the current update vector:

\[\begin{split}& v_{t} = \gamma v_{t-1} + \gamma \bigtriangledown_\theta J(\theta) \\
& \theta = \theta - v_t\end{split}\]

Note: Some implementations exchange the signs in the equations. The momentum term \(\gamma\)
is usually set to 0.9 or a similar value.

Essentially, when using momentum, we push a ball down a hill. The ball accumulates momentum as
it rolls downhill, becoming faster and faster on the way (until it reaches its terminal velocity
if there is air resistance, i.e. \(\gamma<1\)). The same thing happens to our parameter
updates: The momentum term increases for dimensions whose gradients point in the same directions
and reduces updates for dimensions whose gradients change directions. As a result, we gain
faster convergence and reduced oscillation.

4.2.3. Nesterov accelerated gradient

However, a ball that rolls down a hill, blindly following the slope, is highly unsatisfactory.
We’d like to have a smarter ball, a ball that has a notion of where it is going so that it
knows to slow down before the hill slopes up again.

Nesterov accelerated gradient (NAG) 7 is a way to give our momentum term this kind of
prescience. We know that we will use our momentum term \(\gamma v_{t−1}\) to move the
parameters \(0\). Computing \(\theta - \gamma v_{t-1}\) thus gives us an approximation
of the next position of the parameters (the gradient is missing for the full update), a rough
idea where our parameters are going to be. We can now effectively look ahead by calculating
the gradient not w.r.t. to our current parameters θθ but w.r.t. the approximate future
position of our parameters:

\[\begin{split}& v_{t} = \gamma v_{t-1} + \eta \bigtriangledown_\theta J(\theta - \gamma v_{t-1}) \\
& \theta = \theta - v_t\end{split}\]

Again, we set the momentum term γγ to a value of around 0.9. While Momentum first computes
the current gradient (small blue vector in Image 4) and then takes a big jump in the direction
of the updated accumulated gradient (big blue vector), NAG first makes a big jump in the
direction of the previous accumulated gradient (brown vector), measures the gradient and then
makes a correction (red vector), which results in the complete NAG update (green vector).
This anticipatory update prevents us from going too fast and results in increased
responsiveness, which has significantly increased the performance of RNNs on a number of tasks 8.

[image: ../_images/optimizier_4.png]
Image 4: Nesterov update

Refer to here for another explanation about the intuitions behind NAG, while Ilya Sutskever
gives a more detailed overview in his PhD thesis 9.

Now that we are able to adapt our updates to the slope of our error function and speed up
SGD in turn, we would also like to adapt our updates to each individual parameter to
perform larger or smaller updates depending on their importance.

4.2.4. Adagrad

Adagrad 3 is an algorithm for gradient-based optimization that does just this: It
adapts the learning rate to the parameters, performing larger updates for infrequent and
smaller updates for frequent parameters. For this reason, it is well-suited for dealing
with sparse data. Dean et al. 4 have found that Adagrad greatly improved the robustness
of SGD and used it for training large-scale neural nets at Google, which – among other
things – learned to recognize cats in Youtube videos 30. Moreover, Pennington et
al. 5 used Adagrad to train GloVe word embeddings, as infrequent words require much
larger updates than frequent ones.

Previously, we performed an update for all parameters \(\theta\) at once as every
parameter \(\theta_{i}\) used the same learning rate \(\eta\). As Adagrad uses a
different learning rate for every parameter \(\theta_{i}\) at every time step \(t\),
we first show Adagrad’s per-parameter update, which we then vectorize. For brevity,
we set \(g_{t,i}\) to be the gradient of the objective function w.r.t. to the
parameter \(θ_i\) at time step tt:

\[g_{t,i}=\bigtriangledown_\theta J(\theta_i)\]

The SGD update for every parameter \(θ_i\) at each time step \(t\) then becomes:

\[\theta_{t+1,i}=\theta_{t,i}−\eta \ast g_{t,i}\]

In its update rule, Adagrad modifies the general learning rate ηη at each time step \(t\)
for every parameter \(θ_i\) based on the past gradients that have been computed for \(θ_i\):

\[\theta_{t+1,i} = \theta_{t,i} - \frac{\eta}{\sqrt{G_{t,ii}+\epsilon}} \ast g_{t,i}\]

\(G_{t} \in R^{d \times d}\) here is a diagonal matrix where each diagonal
element \(i,i\) is the sum of the squares of the gradients w.r.t. \(θ_i\) up to time
step \(t\) 24, while \(\epsilon\) is a smoothing term that avoids division by zero
(usually on the order of \(1e−8\)). Interestingly, without the square root operation,
the algorithm performs much worse.

As \(G_t\) contains the sum of the squares of the past gradients w.r.t. to all
parameters \(\theta\) along its diagonal, we can now vectorize our implementation
by performing an element-wise matrix-vector multiplication \(\bigodot\) between \(G_t\)
and \(g_t\):

\[\theta_{t+1} = \theta_{t} - \frac{\eta}{\sqrt{G_{t}+\epsilon}} \bigodot g_{t}\]

One of Adagrad’s main benefits is that it eliminates the need to manually tune the learning rate.
Most implementations use a default value of 0.01 and leave it at that.

Adagrad’s main weakness is its accumulation of the squared gradients in the denominator: Since
every added term is positive, the accumulated sum keeps growing during training. This in turn
causes the learning rate to shrink and eventually become infinitesimally small, at which point
the algorithm is no longer able to acquire additional knowledge. The following algorithms aim
to resolve this flaw.

4.2.5. Adadelta

Adadelta 6 is an extension of Adagrad that seeks to reduce its aggressive, monotonically
decreasing learning rate. Instead of accumulating all past squared gradients, Adadelta restricts
the window of accumulated past gradients to some fixed size \(w\).

Instead of inefficiently storing ww previous squared gradients, the sum of gradients is
recursively defined as a decaying average of all past squared gradients. The running average \(E[g^2]_t\)
at time step tt then depends (as a fraction \(\gamma\) similarly to the Momentum term)
only on the previous average and the current gradient:

\[E[g^2]_t = \gamma E[g^2]_{t-1} + (1-\gamma) g_t^2\]

We set \(\gamma\) to a similar value as the momentum term, around 0.9. For clarity, we now
rewrite our vanilla SGD update in terms of the parameter update vector \(\bigtriangleup \theta_{t}\):

\[\begin{split}& \bigtriangleup \theta_{t} = - \eta \ast g_{t,i} \\
& \theta_{t+1} = \theta_{t} + \bigtriangleup \theta_{t}\end{split}\]

The parameter update vector of Adagrad that we derived previously thus takes the form:

\[\bigtriangleup \theta_{t} = - \frac{\eta}{\sqrt{G_{t}+\epsilon}} \bigodot g_{t}\]

We now simply replace the diagonal matrix \(G_t\) with the decaying average over past squared
gradients \(E[g^2]_t\):

\[\bigtriangleup \theta_{t} = - \frac{\eta}{\sqrt{E[g^2]_t+\epsilon}} \bigodot g_{t}\]

As the denominator is just the root mean squared (RMS) error criterion of the gradient, we can
replace it with the criterion short-hand:

\[\bigtriangleup \theta_{t} = - \frac{\eta}{RMS[g]_{t}} g_t\]

The authors note that the units in this update (as well as in SGD, Momentum, or Adagrad)
do not match, i.e. the update should have the same hypothetical units as the parameter.
To realize this, they first define another exponentially decaying average, this time not
of squared gradients but of squared parameter updates:

\[E[\bigtriangleup \theta^2] = \gamma E[\bigtriangleup \theta^2]_{t-1} + (1-\gamma)\bigtriangleup \theta^2\]

The root mean squared error of parameter updates is thus:

\[RMS[\bigtriangleup \theta]_{t} = \sqrt{E(\bigtriangleup \theta^2)_t + \epsilon}\]

Since \(RMS[\bigtriangleup \theta]_{t}\) is unknown, we approximate it with the RMS
of parameter updates until the previous time step. Replacing the learning rate \(\eta\)
in the previous update rule with \(RMS[\bigtriangleup \theta]_{t-1}\) finally yields the
Adadelta update rule:

\[\begin{split}& \bigtriangleup \theta_{t} = - \frac{RMS[\bigtriangleup \theta]_{t-1}}{RMS[\bigtriangleup \theta]_{t}} g_t \\
& \theta_{t+1} = \theta_{t} + \bigtriangleup \theta_{t}\end{split}\]

With Adadelta, we do not even need to set a default learning rate, as it has been eliminated
from the update rule.

4.2.6. RMSprop

RMSprop is an unpublished, adaptive learning rate method proposed by Geoff Hinton in
Lecture 6e of his Coursera Class 31.

RMSprop and Adadelta have both been developed independently around the same time stemming
from the need to resolve Adagrad’s radically diminishing learning rates. RMSprop in fact
is identical to the first update vector of Adadelta that we derived above:

\[\begin{split}& E[g^2]_t = 0.9 E[g^2]_{t-1} + 0.1 g_t^2 \\
& theta_{t+1} = \theta_{t} - \frac{\eta}{\sqrt{E[g^2]_t + \epsilon}} g_t\end{split}\]

RMSprop as well divides the learning rate by an exponentially decaying average of squared
gradients. Hinton suggests \(\gamma\) to be set to 0.9, while a good default value for
the learning rate \(\eta\) is 0.001.

4.2.7. Adam

Adaptive Moment Estimation (Adam) 15 is another method that computes adaptive learning
rates for each parameter. In addition to storing an exponentially decaying average of past
squared gradients \(v_t\) like Adadelta and RMSprop, Adam also keeps an exponentially decaying
average of past gradients \(m_t\), similar to momentum:

\[\begin{split}& m_t=\beta_1 m_{t−1}+(1−\beta_1)g_t \\
& v_t=\beta_2 v_t−1+(1−\beta_2)g_t^2\end{split}\]

\(m_t\) and \(v_t\) are estimates of the first moment (the mean) and the second
moment (the uncentered variance) of the gradients respectively, hence the name of the
method. As \(m_t\) and \(v_t\) are initialized as vectors of 0’s, the authors
of Adam observe that they are biased towards zero, especially during the initial time
steps, and especially when the decay rates are small (i.e. \(\beta_1\)
and \(\beta_2\) are close to 1).

They counteract these biases by computing bias-corrected first and second moment estimates:

\[\begin{split}& \widehat{m_t} = \frac{m_{t}}{1-\beta_1^t} \\
& \widehat{v_t} = \frac{v_t}{1-\beta_2^t}\end{split}\]

They then use these to update the parameters just as we have seen in Adadelta and
RMSprop, which yields the Adam update rule:

\[\theta_{t+1} = \theta_{t} - \frac{\eta}{\sqrt{\widehat{v_t}}+\epsilon} \widehat{m_t}\]

The authors propose default values of 0.9 for \(\beta_1\), 0.999 for \(\beta_2\),
and \(10−8\) for \(\epsilon\). They show empirically that Adam works well in
practice and compares favorably to other adaptive learning-method algorithms.

4.2.8. Visualization of algorithms

The following two animations provide some intuitions towards the optimization behaviour
of the presented optimization algorithms. Also have a look here 32 for a description
of the same images by Karpathy and another concise overview of the algorithms discussed.

[image: ../_images/optimizer_5.gif]
Image 5: SGD optimization on loss surface contours

[image: ../_images/optimizer_6.gif]
Image 6: SGD optimization on saddle point

In Image 5, we see their behaviour on the contours of a loss surface over time. Note
that Adagrad, Adadelta, and RMSprop almost immediately head off in the right direction
and converge similarly fast, while Momentum and NAG are led off-track, evoking the image
of a ball rolling down the hill. NAG, however, is quickly able to correct its course due
to its increased responsiveness by looking ahead and heads to the minimum.

Image 6 shows the behaviour of the algorithms at a saddle point, i.e. a point where one
dimension has a positive slope, while the other dimension has a negative slope, which pose
a difficulty for SGD as we mentioned before. Notice here that SGD, Momentum, and NAG find
it difficulty to break symmetry, although the two latter eventually manage to escape the
saddle point, while Adagrad, RMSprop, and Adadelta quickly head down the negative slope.

As we can see, the adaptive learning-rate methods, i.e. Adagrad, Adadelta, RMSprop, and
Adam are most suitable and provide the best convergence for these scenarios.

4.2.9. Which optimizer to choose?

So, which optimizer should you now use? If your input data is sparse, then you likely
achieve the best results using one of the adaptive learning-rate methods. An additional
benefit is that you won’t need to tune the learning rate but likely achieve the best
results with the default value.

In summary, RMSprop is an extension of Adagrad that deals with its radically diminishing
learning rates. It is identical to Adadelta, except that Adadelta uses the RMS of parameter
updates in the numinator update rule. Adam, finally, adds bias-correction and momentum to
RMSprop. Insofar, RMSprop, Adadelta, and Adam are very similar algorithms that do well in
similar circumstances. Kingma et al. 15 show that its bias-correction helps Adam
slightly outperform RMSprop towards the end of optimization as gradients become sparser.
Insofar, Adam might be the best overall choice.

Interestingly, many recent papers use vanilla SGD without momentum and a simple learning
rate annealing schedule. As has been shown, SGD usually achieves to find a minimum, but
it might take significantly longer than with some of the optimizers, is much more reliant
on a robust initialization and annealing schedule, and may get stuck in saddle points rather
than local minima. Consequently, if you care about fast convergence and train a deep or
complex neural network, you should choose one of the adaptive learning rate methods.

4.3. Parallelizing and distributing SGD

Given the ubiquity of large-scale data solutions and the availability of low-commodity
clusters, distributing SGD to speed it up further is an obvious choice.

SGD by itself is inherently sequential: Step-by-step, we progress further towards the
minimum. Running it provides good convergence but can be slow particularly on large datasets.
In contrast, running SGD asynchronously is faster, but suboptimal communication between
workers can lead to poor convergence. Additionally, we can also parallelize SGD on one
machine without the need for a large computing cluster. The following are algorithms and
architectures that have been proposed to optimize parallelized and distributed SGD.

4.3.1. Hogwild!

Niu et al. 23 introduce an update scheme called Hogwild! that allows performing SGD
updates in parallel on CPUs. Processors are allowed to access shared memory without locking
the parameters. This only works if the input data is sparse, as each update will only modify
a fraction of all parameters. They show that in this case, the update scheme achieves almost
an optimal rate of convergence, as it is unlikely that processors will overwrite useful
information.

4.3.2. Downpour SGD

Downpour SGD is an asynchronous variant of SGD that was used by Dean et al. 4 in their
DistBelief framework (predecessor to TensorFlow) at Google. It runs multiple replicas of
a model in parallel on subsets of the training data. These models send their updates to
a parameter server, which is split across many machines. Each machine is responsible for
storing and updating a fraction of the model’s parameters. However, as replicas don’t
communicate with each other e.g. by sharing weights or updates, their parameters are
continuously at risk of diverging, hindering convergence.

4.3.3. Delay-tolerant Algorithms for SGD

McMahan and Streeter 12 extend AdaGrad to the parallel setting by developing
delay-tolerant algorithms that not only adapt to past gradients, but also to the update
delays. This has been shown to work well in practice.

4.3.4. TensorFlow

TensorFlow 13 is Google’s recently open-sourced framework for the implementation and
deployment of large-scale machine learning models. It is based on their experience with
DistBelief and is already used internally to perform computations on a large range of
mobile devices as well as on large-scale distributed systems. For distributed execution,
a computation graph is split into a subgraph for every device and communication takes
place using Send/Receive node pairs. However, the open source version of TensorFlow
currently does not support distributed functionality (see here 33). Update 13.04.16: A
distributed version of TensorFlow has been released 34.

4.3.5. Elastic Averaging SGD

Zhang et al. 14 propose Elastic Averaging SGD (EASGD), which links the parameters of
the workers of asynchronous SGD with an elastic force, i.e. a center variable stored by
the parameter server. This allows the local variables to fluctuate further from the center
variable, which in theory allows for more exploration of the parameter space. They show
empirically that this increased capacity for exploration leads to improved performance by
finding new local optima.

4.4. Additional strategies for optimizing SGD

Finally, we introduce additional strategies that can be used alongside any of the
previously mentioned algorithms to further improve the performance of SGD. For a great
overview of some other common tricks, refer to 22.

4.4.1. Shuffling and Curriculum Learning

Generally, we want to avoid providing the training examples in a meaningful order to
our model as this may bias the optimization algorithm. Consequently, it is often a good
idea to shuffle the training data after every epoch.

On the other hand, for some cases where we aim to solve progressively harder problems,
supplying the training examples in a meaningful order may actually lead to improved
performance and better convergence. The method for establishing this meaningful order
is called Curriculum Learning 16.

Zaremba and Sutskever 17 were only able to train LSTMs to evaluate simple programs
using Curriculum Learning and show that a combined or mixed strategy is better than the
naive one, which sorts examples by increasing difficulty.

4.4.2. Batch normalization

To facilitate learning, we typically normalize the initial values of our parameters
by initializing them with zero mean and unit variance. As training progresses and we
update parameters to different extents, we lose this normalization, which slows down
training and amplifies changes as the network becomes deeper.

Batch normalization 18 reestablishes these normalizations for every mini-batch and
changes are back-propagated through the operation as well. By making normalization part
of the model architecture, we are able to use higher learning rates and pay less attention
to the initialization parameters. Batch normalization additionally acts as a regularizer,
reducing (and sometimes even eliminating) the need for Dropout.

4.4.3. Early Stopping

According to Geoff Hinton: “Early stopping (is) beautiful free lunch” (NIPS 2015 Tutorial
slides, slide 63) 35. You should thus always monitor error on a validation set during
training and stop (with some patience) if your validation error does not improve enough.

4.4.4. Gradient noise

Neelakantan et al. 21 add noise that follows a Gaussian distribution \(N(0,\sigma_t^2)\)
to each gradient update:

\[g_{t,i} = g_{t,i} + N(0, \sigma_t^2)\]

They anneal the variance according to the following schedule:

\[\sigma_t^2 = \frac{\eta}{(1+t)^{\gamma}}\]

They show that adding this noise makes networks more robust to poor initialization and
helps training particularly deep and complex networks. They suspect that the added noise
gives the model more chances to escape and find new local minima, which are more frequent
for deeper models.

4.5. Conclusion

In this blog post, we have initially looked at the three variants of gradient descent,
among which mini-batch gradient descent is the most popular. We have then investigated
algorithms that are most commonly used for optimizing SGD: Momentum, Nesterov accelerated
gradient, Adagrad, Adadelta, RMSprop, Adam, as well as different algorithms to optimize
asynchronous SGD. Finally, we’ve considered other strategies to improve SGD such as shuffling
and curriculum learning, batch normalization, and early stopping.

	1

	Sutton, R. S. (1986). Two problems with backpropagation and other steepest-descent
learning procedures for networks. Proc. 8th Annual Conf. Cognitive Science Society.

	2

	Qian, N. (1999). On the momentum term in gradient descent learning algorithms.
Neural Networks : The Official Journal of the International Neural Network Society,
12(1), 145–151. http://doi.org/10.1016/S0893-6080(98)00116-6

	3

	Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization. Journal of Machine Learning Research, 12,
2121–2159. Retrieved from http://jmlr.org/papers/v12/duchi11a.html

	4(1,2)

	Dean, J., Corrado, G. S., Monga, R., Chen, K., Devin, M., Le, Q. V, … Ng, A. Y.
(2012). Large Scale Distributed Deep Networks. NIPS 2012: Neural Information
Processing Systems, 1–11. http://doi.org/10.1109/ICDAR.2011.95

	5

	Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global Vectors for
Word Representation. Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing, 1532–1543. http://doi.org/10.3115/v1/D14-1162

	6

	Zeiler, M. D. (2012). ADADELTA: An Adaptive Learning Rate Method. Retrieved from
http://arxiv.org/abs/1212.5701

	7

	Nesterov, Y. (1983). A method for unconstrained convex minimization problem with
the rate of convergence o(1/k2). Doklady ANSSSR (translated as Soviet.Math.Docl.),
vol. 269, pp. 543– 547.

	8

	Bengio, Y., Boulanger-Lewandowski, N., & Pascanu, R. (2012). Advances in Optimizing
Recurrent Networks. Retrieved from http://arxiv.org/abs/1212.0901

	9

	Sutskever, I. (2013). Training Recurrent neural Networks. PhD Thesis.

	10

	Darken, C., Chang, J., & Moody, J. (1992). Learning rate schedules for faster
stochastic gradient search. Neural Networks for Signal Processing II Proceedings
of the 1992 IEEE Workshop, (September), 1–11. http://doi.org/10.1109/NNSP.1992.253713

	11

	H. Robinds and S. Monro, “A stochastic approximation method,” Annals of Mathematical
Statistics, vol. 22, pp. 400–407, 1951.

	12

	Mcmahan, H. B., & Streeter, M. (2014). Delay-Tolerant Algorithms for Asynchronous
Distributed Online Learning. Advances in Neural Information Processing Systems
(Proceedings of NIPS), 1–9. Retrieved from http://papers.nips.cc/paper/5242-delay-
tolerant-algorithms-for-asynchronous-distributed-online-learning.pdf

	13

	Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., … Zheng, X.
(2015). TensorFlow : Large-Scale Machine Learning on Heterogeneous Distributed
Systems.

	14

	Zhang, S., Choromanska, A., & LeCun, Y. (2015). Deep learning with Elastic
Averaging SGD. Neural Information Processing Systems Conference (NIPS 2015), 1–24.
Retrieved from http://arxiv.org/abs/1412.6651

	15(1,2)

	Kingma, D. P., & Ba, J. L. (2015). Adam: a Method for Stochastic Optimization.
International Conference on Learning Representations, 1–13.

	16

	Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009). Curriculum learning.
Proceedings of the 26th Annual International Conference on Machine Learning, 41–48.
http://doi.org/10.1145/1553374.1553380

	17

	Zaremba, W., & Sutskever, I. (2014). Learning to Execute, 1–25. Retrieved from
http://arxiv.org/abs/1410.4615

	18

	Ioffe, S., & Szegedy, C. (2015). Batch Normalization : Accelerating Deep Network
Training by Reducing Internal Covariate Shift. arXiv Preprint arXiv:1502.03167v3.

	19

	Dauphin, Y., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., & Bengio, Y. (2014).
Identifying and attacking the saddle point problem in high-dimensional non-convex
optimization. arXiv, 1–14. Retrieved from http://arxiv.org/abs/1406.2572

	20

	Sutskever, I., & Martens, J. (2013). On the importance of initialization and
momentum in deep learning. http://doi.org/10.1109/ICASSP.2013.6639346

	21

	Neelakantan, A., Vilnis, L., Le, Q. V., Sutskever, I., Kaiser, L., Kurach, K.,
& Martens, J. (2015). Adding Gradient Noise Improves Learning for Very Deep
Networks, 1–11. Retrieved from http://arxiv.org/abs/1511.06807

	22

	LeCun, Y., Bottou, L., Orr, G. B., & Müller, K. R. (1998). Efficient BackProp.
Neural Networks: Tricks of the Trade, 1524, 9–50. http://doi.org/10.1007/3-
540-49430-8_2

	23

	Niu, F., Recht, B., Christopher, R., & Wright, S. J. (2011). Hogwild! : A
Lock-Free Approach to Parallelizing Stochastic Gradient Descent, 1–22.

	24

	Duchi et al. [3] give this matrix as an alternative to the full matrix containing
the outer products of all previous gradients, as the computation of the matrix
square root is infeasible even for a moderate number of parameters dd.

	25

	http://lasagne.readthedocs.org/en/latest/modules/updates.html

	26

	http://caffe.berkeleyvision.org/tutorial/solver.html

	27

	http://keras.io/optimizers/

	28

	http://cs231n.github.io/optimization-1/

	29

	https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization

	30

	https://www.wired.com/2012/06/google-x-neural-network/

	31

	http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

	32

	http://cs231n.github.io/neural-networks-3/

	33

	https://github.com/tensorflow/tensorflow/issues/23

	34

	http://googleresearch.blogspot.ie/2016/04/announcing-tensorflow-08-now-with.html

	35

	http://www.iro.umontreal.ca/~bengioy/talks/DL-Tutorial-NIPS2015.pdf

	36

	http://arxiv.org/abs/1609.04747

5. Multilayer Perceptron

5.1. Sigmoid function

BP algorithm is mainly due to the emergence of Sigmoid function, instead of
the previous threshold function to construct neurons.

The Sigmoid function is a monotonically increasing nonlinear function. When the
threshold value is large enough, the threshold function can be approximated.

[image: ../_images/mlp_1.jpg]

The Sigmoid function is usually written in the following form:

\[f(x) = \frac{1}{1 + e^{-x}}\]

The value range is \((-1,1)\), which can be used instead of the neuron step function:

\[f(x) = \frac{1}{1 + e^{- \sum_{i=1}^{n} w_i x_i-w_0}}\]

Due to the complexity of the network structure, the Sigmoid function is used as the
transfer function of the neuron. This is the basic idea of multilayer perceptron backpropagation algorithm.

5.2. Back Propagation

Back Propagation (BP) algorithm is the optimization of the network through the iterative weights makes the
actual mapping relationship between input and output and the desired mapping, descent algorithm by adjusting
the layer weights for the objective function to minimize the gradient. The sum of the squared error between
the predicted output and the expected output of the network on one or all training samples：

\[\begin{split}& J(w) = \frac{1}{2} \sum_{j=1}^{s} (t_j - s_j)^2 = \frac{1}{2} \mid t - a \mid ^ 2 \\
& J_{total}(w) = \frac{1}{2} \sum_{i=1}^{N} \mid t_i - a_i \mid ^ 2\end{split}\]

The error of each unit is calculated by layer by layer error of output layer:

\[\begin{split}\bigtriangledown w_j^k & = - \eta \frac{\partial J}{\partial J w_j^k} \\
 & = - \eta \frac{\partial J}{\partial n_j^k}\frac{\partial n_j^k}{\partial Jw_j^k} \\
 & = -\eta \frac{\partial J}{\partial n_j^k} a^{k-1} \\
 & = - \eta \delta_j^k a^{k-1}\end{split}\]

Back Propagation Net (BPN) is a kind of multilayer network which is trained by weight of nonlinear
differentiable function. BP network is mainly used for:

	function approximation and prediction analysis: using the input vector and the corresponding output vector to
train a network to approximate a function or to predict the unknown information;

	pattern recognition: using a specific output vector to associate it with the input vector;

	classification: the input vector is defined in the appropriate manner;

	data compression: reduce the output vector dimension to facilitate transmission and storage.

For example, a three tier BP structure is as follows:

[image: ../_images/mlp_2.png]

It consists of three layers: input layer, hidden layer and output layer. The unit of each layer
is connected with all the units of the adjacent layer, and there is no connection between the units in the
same layer. When a pair of learning samples are provided to the network, the activation value of the neuron
is transmitted from the input layer to the output layer through the intermediate layers, and the input
response of the network is obtained by the neurons in the output layer. Next, according to the direction
of reducing the output of the target and the direction of the actual error, the weights of each link are
modified from the output layer to the input layer.

5.3. Example

Suppose you have such a network layer:

	The first layer is the input layer, two neurons containing \(i_1, i_2, b_1\) and intercept;

	The second layer is the hidden layer, including two neurons \(h_1, h_2\) and intercept b2;

	The third layer is the output of \(o_1, o_2\) and \(w_i\) are each line superscript connection
weights between layers, we default to the activation function sigmoid function.

Now give them the initial value, as shown below:

[image: ../_images/mlp_3.png]

Among them,

	Input data: \(i_1=0.05, i_2=0.10\);

	Output data: \(o_1=0.01, o_2=0.99\);

	Initial weight: \(w_1=0.15, w_2=0.20, w_3=0.25, w_4=0.30, w_5=0.40, w_6=0.45, w_7=0.50, w_8=0.88\);

Objective: to give input data \(i_1, i_2\) (0.05 and 0.10), so that the output is as close as
possible to the original output \(o_1, o_2\) (0.01 and 0.99).

5.3.1. Step 1: Forward Propagation

5.3.1.1. Input layer to Hidden layer

Calculate the input weighted sum of neurons \(h_1\):

\[\begin{split}& net_{h1} = w_1 * i_1 + w_2 * i_2 + b_i * 1 \\
& net_{h1} = 0.15 * 0.05 + 0.2 * 0.1 + 0.35 * 1 = 0.3775\end{split}\]

\(o_1\), the output of neuron \(h_1\): (Activation function sigmoid is required here):

\[out_{h1} = \frac{1}{1 + e^{-net_{h1}}} = \frac{1}{1+e^{-0.3775}} = 0.593269992\]

Similarly, \(o_2\), the output of neuron \(h_2\) can be calculated:

\[out_{h2} = 0.596884378\]

5.3.1.2. Hidden layer to Output layer

The values of \(o_1\) and \(o_2\) in the output layer are calculated:

\[\begin{split}& net_{o1} = w_5 * out_{h1} + w_6 * out_{h2} + b_2 * 1 \\
& net_{o1} = 0.4 * 0.593269992 + 0.45 * 0.596884378 + 0.6 * 1 = 1.105905967 \\
& out_{o1} = \frac{1}{1+e^{-net_{o1}}} = \frac{1}{1+e^{-1.105905967}} = 0.75136507 \\
& out_{o2} = 0.772928465\end{split}\]

This propagation process is finished, we get the output value of \([0.75136079, 0.772928465]\),
and the actual value of \([0.01, 0.99]\) far from now, we for the error back-propagation,
update the weights, to calculate the output.

5.3.2. Step 2: Back Propagation

5.3.2.1. Calculate the total error

Total error (square error):

\[E_{total} = \sum \frac{1}{2}(target - output) ^ 2\]

For example, the target output for \(o_1\) is 0.01 but the neural network output 0.75136507,
therefore its error is:

\[E_{o1} = \frac{1}{2}(target_{o1} - out_{o1}) ^ 2 = \frac{1}{2} (0.01 - 0.75136507)^2 = 0.274811083\]

Repeating this process for \(o_2\) (remembering that the target is 0.99) we get:

\[E_{o2} = 0.023560026\]

The total error for the neural network is the sum of these errors:

\[E_{total} = E_{o1} + E_{o2} = 0.274811083 + 0.023560026 = 0.298371109\]

5.3.2.2. Hidden layer to Hidden layer weights update

Take the weight parameter \(w_5\) as an example, if we want to know how much impact
the \(w_5\) has on the overall error, we can use the global error to obtain the partial
derivative of \(w_5\): (chain rule)

\[\frac{\partial E_{total}}{\partial w_5} = \frac{\partial E_{total}}{\partial out_{o1}} *
\frac{\partial out_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial w_5}\]

The following figure can be more intuitive to see how the error is spread back:

[image: ../_images/mlp_4.png]

Now we were calculated for each value:

	Calculate \(\frac{\partial E_{total}}{\partial out_{o1}}\).

\[\begin{split}& E_{total} = \frac{1}{2}(target_{o1} - out_{o1}) ^ 2 + \frac{1}{2}(target_{o2} - out_{o2}) ^ 2 \\
& \frac{\partial E_{total}}{\partial out_{o1}} = 2 * \frac{1}{2}(target_{o1} - out_{o1})^{2-1} * -1 + 0 \\
& \frac{\partial E_{total}}{\partial out_{o1}} = -(target_{o1} - out_{o1}) = -(0.01 - 0.75136507) = 0.74136507\end{split}\]

	Calculate \(\frac{\partial out_{o1}}{\partial net_{o1}}\):

\[\begin{split}& out_{o1} = \frac{1}{1+e^{-net_{o1}}} \\
& \frac{\partial out_{o1}}{\partial net_{o1}} = out_{o1} (1-out_{o1}) = 0.75136507(1-0.75136507) = 0.186815602\end{split}\]

	Calculate \(\frac{\partial net_{o1}}{\partial w_5}\):

\[\begin{split}& net_{o1} = w_5 * out_{h1} + w_6 * out_{h2} + b_2 * 1 \\
& \frac{\partial net_{o1}}{\partial w_5} = 1 * out_{h1} * w_5^{(1-1)} + 0 + 0 = out_{h1} = 0.593269992\end{split}\]

	Putting it all together:

\[\begin{split}& \frac{\partial E_{total}}{\partial w_5} = \frac{\partial E_{total}}{\partial out_{o1}} *
 \frac{\partial out_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial w_5} \\
& \frac{\partial E_{total}}{\partial w_5} = 0.74136507 * 0.186815602 * 0.59326992 = 0.082167041\end{split}\]

In this way, we calculate the overall error \(E_{total}\) to the \(w_5\) partial guide.
Look at the above formula, we found:

\[\frac{\partial E_{total}}{\partial w_5} = -(target_{o1} - out_{o1}) * out_{o1}(1-out_{o1}) * out_{h1}\]

In order to express convenience, \(\delta_{o1}\) is used to express the error of output layer:

\[\begin{split}& \delta_{o1} = \frac{\partial E_{total}}{\partial out_{o1}} * \frac{\partial out_{o1}}{\partial net_{o1}} =
 \frac{\partial E_{total}}{\partial net_{o1}} \\
& \delta_{o1} = - (target_{o1} - out_{o1}) * out_{o1} (1-out_{o1})\end{split}\]

Therefore, the overall error \(E_{total}\) can be written as a partial derivative formula for \(w_5\):

\[\frac{\partial E_{total}}{\partial w_5} = \delta_{o1} out_{h1}\]

If the output layer error meter is negative, it can also be written:

\[\frac{\partial E_{total}}{\partial w_5} = - \delta_{o1} out_{h1}\]

Finally, we update the value of \(w_5\):

\[w_5^+ = w_5 - \eta * \frac{\partial E_{total}}{\partial w_5} = 0.4 - 0.5*0.082167041 = 0.35891648\]

Among them, \(\eta\) is the learning rate, here we take 0.5. Similarly,
update \(w_6\), \(w_7\), \(w_8\):

\[\begin{split}& w_6^+ = 0.408666186 \\
& w_7^+ = 0.511301270 \\
& w_8^+ = 0.561370121\end{split}\]

5.3.2.3. Hidden layer to Input layer weights update

In fact, with the method above said almost, but there is a need to change, calculate the total error
of the above \(w_5\) guide, from \(out_{o1}\) —-> \(net_{o1}\) —-> \(w_5\), but
in the hidden layer between the weight update, \(out_{h1}\) —-> \(net_{h1}\) —-> \(w_1\)
and \(out_{h1}\) will accept \(E_{o1}\) and \(E_{o2}\) error of two places to two, so this
place will be calculated.

[image: ../_images/mlp_5.png]

	Calculate \(\frac{\partial E_{total}}{\partial out_{h1}}\):

\[\frac{\partial E_{total}}{\partial out_{h1}} =
\frac{\partial E_{o1}}{\partial out_{h1}} + \frac{\partial E_{o2}}{\partial out_{h1}}\]

	Calculate \(\frac{\partial E_{o1}}{\partial out_{h1}}\):

\[\begin{split}& \frac{\partial E_{o1}}{\partial out_{h1}} = \frac{\partial E_{o1}}{\partial net_{o1}} *
 \frac{\partial net_{o1}}{\partial out_{h1}} \\
& \frac{\partial E_{o1}}{\partial net_{o1}} = \frac{\partial E_{o1}}{\partial out_{o1}} *
 \frac{\partial net_{o1}}{\partial out_{h1}} = 0.74136507 * 0.186815602 = 0.138498562 \\
& net_{o1} = w_5 * out_{h1} + w_6 * out_{h2} + b_2 * 1 \\
& \frac{\partial net_{o1}}{\partial out_{h1}} = w_5 = 0.40 \\
& \frac{\partial E_{o1}}{\partial out_{h1}} =\frac{\partial E_{o1}}{\partial net_{o1}} *
 \frac{\partial net_{o1}}{\partial out_{h1}} = 0.138498562 * 0.40 = 0.055399425\end{split}\]

	Similarly, calculate \(\frac{\partial E_{o2}}{\partial out_{h1}} = -.019049119\):

	Therefore,

\[\frac{\partial E_{total}}{\partial out_{h1}} =
\frac{\partial E_{o1}}{\partial out_{h1}} +
\frac{\partial E_{o2}}{\partial out_{h1}} =
0.055399425 + -.019049119 + 0.036350306\]

	Then, calculate \(\frac{\partial out_{h1}}{\partial net_{h1}}\):

\[\begin{split}& out_{h1} = \frac{1}{1+e^{-net_{h1}}} \\
& \frac{\partial out_{h1}}{\partial net_{h1}} = out_{h1} (1-out_{h1}) = 0.241300709\end{split}\]

	Calculate \(\frac{\partial net_{h1}}{\partial w_{h1}}\):

\[\begin{split}& net_{h1} = w_1 * i_1 + w_2 * i_2 + b_1 * 1 \\
& \frac{\partial net_{h1}}{\partial w_{h1}} = i_1 = 0.05\end{split}\]

Putting it all together:

\[\frac{\partial E_{total}}{\partial w_1} =
\frac{\partial E_{total}}{\partial out_{h1}} *
\frac{\partial out_{h1}}{\partial net_{h1}} *
\frac{\partial net_{h1}}{\partial w_1} =
0.036350306 * 0.241300709 * 0.05 = 0.000438568\]

In order to simplify the formula, \(\sigma_{h1}\) is used to represent the error of the hidden layer
unit \(h_1\):

\[\begin{split}& \frac{\partial E_{total}}{\partial w_1}=
(\sum_{o}\frac{\partial E_{total}}{\partial out_o} *
\frac{\partial out_o}{\partial net_o} *
\frac{\partial net_o}{\partial out_{h1}}) *
\frac{\partial out_{h1}}{\partial net_{h1}} *
\frac{\partial net_{h1}}{\partial w_1} \\
& \frac{\partial E_{total}}{\partial w_1}=
(\sum_o \delta_o * w_{ho}) * out_{h1} (1- out_{h1}) * i_1 \\
& \frac{\partial E_{total}}{\partial w_1}= = \delta_{h1} i_1\end{split}\]

We can now update \(w_1\):

\[w_1^+ = w_1 - \eta * \frac{\partial E_{total}}{\partial w_1} = 0.15 - 0.5 * 0.000438568 = 0.149780716\]

Repeating this for \(w_2\), \(w_3\), and \(w_4\):

\[\begin{split}& w_2^+ = 0.19956143 \\
& w_3^+ = 0.24975114 \\
& w_4^+ = 0.29950229\end{split}\]

Finally, we’ve updated all of our weights! When we fed forward the 0.05 and 0.1 inputs originally, the
error on the network was 0.298371109. After this first round of back propagation, the total error is now
down to 0.291027924. It might not seem like much, but after repeating this process 10,000 times, for
example, the error plummets to 0.000035085. At this point, when we feed forward 0.05 and 0.1, the two
outputs neurons generate 0.015912196 (vs 0.01 target) and 0.984065734 (vs 0.99 target).

5.4. Code

First, import necessary packages:

import random
import math

Define network:

class NeuralNetwork:
 LEARNING_RATE = 0.5

 def __init__(self, num_inputs, num_hidden, num_outputs,
 hidden_layer_weights=None,
 hidden_layer_bias=None,
 output_layer_weights=None,
 output_layer_bias=None):
 self.num_inputs = num_inputs

 self.hidden_layer = NeuronLayer(num_hidden, hidden_layer_bias)
 self.output_layer = NeuronLayer(num_outputs, output_layer_bias)

 self.init_weights_from_inputs_to_hidden_layer_neurons(hidden_layer_weights)
 self.init_weights_from_hidden_layer_neurons_to_output_layer_neurons(output_layer_weights)

 def init_weights_from_inputs_to_hidden_layer_neurons(self, hidden_layer_weights):
 weight_num = 0
 for h in range(len(self.hidden_layer.neurons)):
 for i in range(self.num_inputs):
 if not hidden_layer_weights:
 self.hidden_layer.neurons[h].weights.append(random.random())
 else:
 self.hidden_layer.neurons[h].weights.append(hidden_layer_weights[weight_num])
 weight_num += 1

 def init_weights_from_hidden_layer_neurons_to_output_layer_neurons(self, output_layer_weights):
 weight_num = 0
 for o in range(len(self.output_layer.neurons)):
 for h in range(len(self.hidden_layer.neurons)):
 if not output_layer_weights:
 self.output_layer.neurons[o].weights.append(random.random())
 else:
 self.output_layer.neurons[o].weights.append(output_layer_weights[weight_num])
 weight_num += 1

 def inspect(self):
 print('------')
 print('* Inputs: {}'.format(self.num_inputs))
 print('------')
 print('Hidden Layer')
 self.hidden_layer.inspect()
 print('------')
 print('* Output Layer')
 self.output_layer.inspect()
 print('------')

 def feed_forward(self, inputs):
 hidden_layer_outputs = self.hidden_layer.feed_forward(inputs)
 return self.output_layer.feed_forward(hidden_layer_outputs)

 # Uses online learning, ie updating the weights after each training case
 def train(self, training_inputs, training_outputs):
 self.feed_forward(training_inputs)

 # 1. Output neuron deltas
 pd_errors_wrt_output_neuron_total_net_input = [0] * len(self.output_layer.neurons)
 for o in range(len(self.output_layer.neurons)):
 # ∂E/∂zⱼ
 pd_errors_wrt_output_neuron_total_net_input[o] = self.output_layer.neurons[
 o].calculate_pd_error_wrt_total_net_input(training_outputs[o])

 # 2. Hidden neuron deltas
 pd_errors_wrt_hidden_neuron_total_net_input = [0] * len(self.hidden_layer.neurons)
 for h in range(len(self.hidden_layer.neurons)):

 # We need to calculate the derivative of the error with respect to the output of each hidden layer neuron
 # dE/dyⱼ = Σ ∂E/∂zⱼ * ∂z/∂yⱼ = Σ ∂E/∂zⱼ * wᵢⱼ
 d_error_wrt_hidden_neuron_output = 0
 for o in range(len(self.output_layer.neurons)):
 d_error_wrt_hidden_neuron_output += pd_errors_wrt_output_neuron_total_net_input[o] * \
 self.output_layer.neurons[o].weights[h]

 # ∂E/∂zⱼ = dE/dyⱼ * ∂zⱼ/∂
 pd_errors_wrt_hidden_neuron_total_net_input[h] = d_error_wrt_hidden_neuron_output * \
 self.hidden_layer.neurons[
 h].calculate_pd_total_net_input_wrt_input()

 # 3. Update output neuron weights
 for o in range(len(self.output_layer.neurons)):
 for w_ho in range(len(self.output_layer.neurons[o].weights)):
 # ∂Eⱼ/∂wᵢⱼ = ∂E/∂zⱼ * ∂zⱼ/∂wᵢⱼ
 pd_error_wrt_weight = pd_errors_wrt_output_neuron_total_net_input[o] * self.output_layer.neurons[
 o].calculate_pd_total_net_input_wrt_weight(w_ho)

 # Δw = α * ∂Eⱼ/∂wᵢ
 self.output_layer.neurons[o].weights[w_ho] -= self.LEARNING_RATE * pd_error_wrt_weight

 # 4. Update hidden neuron weights
 for h in range(len(self.hidden_layer.neurons)):
 for w_ih in range(len(self.hidden_layer.neurons[h].weights)):
 # ∂Eⱼ/∂wᵢ = ∂E/∂zⱼ * ∂zⱼ/∂wᵢ
 pd_error_wrt_weight = pd_errors_wrt_hidden_neuron_total_net_input[h] * self.hidden_layer.neurons[
 h].calculate_pd_total_net_input_wrt_weight(w_ih)

 # Δw = α * ∂Eⱼ/∂wᵢ
 self.hidden_layer.neurons[h].weights[w_ih] -= self.LEARNING_RATE * pd_error_wrt_weight

 def calculate_total_error(self, training_sets):
 total_error = 0
 for t in range(len(training_sets)):
 training_inputs, training_outputs = training_sets[t]
 self.feed_forward(training_inputs)
 for o in range(len(training_outputs)):
 total_error += self.output_layer.neurons[o].calculate_error(training_outputs[o])
 return total_error

Define layer:

class NeuronLayer:
 def __init__(self, num_neurons, bias):

 # Every neuron in a layer shares the same bias
 self.bias = bias if bias else random.random()

 self.neurons = []
 for i in range(num_neurons):
 self.neurons.append(Neuron(self.bias))

 def inspect(self):
 print('Neurons:', len(self.neurons))
 for n in range(len(self.neurons)):
 print(' Neuron', n)
 for w in range(len(self.neurons[n].weights)):
 print(' Weight:', self.neurons[n].weights[w])
 print(' Bias:', self.bias)

 def feed_forward(self, inputs):
 outputs = []
 for neuron in self.neurons:
 outputs.append(neuron.calculate_output(inputs))
 return outputs

 def get_outputs(self):
 outputs = []
 for neuron in self.neurons:
 outputs.append(neuron.output)
 return outputs

Define neuron:
.. literalinclude:: mlp_bp.py

	start-after

	neuron-start

	end-before

	neuron-end

Put all together, and run example:

nn = NeuralNetwork(2, 2, 2,
 hidden_layer_weights=[0.15, 0.2, 0.25, 0.3],
 hidden_layer_bias=0.35,
 output_layer_weights=[0.4, 0.45, 0.5, 0.55],
 output_layer_bias=0.6)
for i in range(10000):
 nn.train([0.05, 0.1], [0.01, 0.99])
 print(i, round(nn.calculate_total_error([[[0.05, 0.1], [0.01, 0.99]]]), 9))

 # XOR example:

 # training_sets = [
 # [[0, 0], [0]],
 # [[0, 1], [1]],
 # [[1, 0], [1]],
 # [[1, 1], [0]]
 #]

 # nn = NeuralNetwork(len(training_sets[0][0]), 5, len(training_sets[0][1]))
 # for i in range(10000):
 # training_inputs, training_outputs = random.choice(training_sets)
 # nn.train(training_inputs, training_outputs)
 # print(i, nn.calculate_total_error(training_sets))

Please Enjoy!

	1

	Wikipedia article on Backpropagation. http://en.wikipedia.org/wiki/Backpropagation#Finding_the_derivative_of_the_error

	2

	Neural Networks for Machine Learning course on Coursera by Geoffrey Hinton. https://class.coursera.org/neuralnets-2012-001/lecture/39

	3

	The Back Propagation Algorithm. https://www4.rgu.ac.uk/files/chapter3%20-%20bp.pdf

6. Convolution Neural Networks

6.1. Introduction

Convolutional Neural Networks (CNN) are now a standard way of image classification –
there are publicly accessible deep learning frameworks, trained models and services.
It’s more time consuming to install stuff like caffe 1 than to perform state-of-the-art
object classification or detection. We also have many methods of getting knowledge -
there is a large number of deep learning courses 2 /MOOCs 3, free e-books 4 or
even direct ways of accessing to the strongest Deep/Machine Learning minds such as
Yoshua Bengio 5, Andrew NG 6 or Yann Lecun 7 by Quora, Facebook or G+.

Nevertheless, when I wanted to get deeper insight in CNN, I could not find a “CNN
backpropagation for dummies”. Notoriously I met with statements like: “If you understand
backpropagation in standard neural networks, there should not be a problem with understanding
it in CNN” or “All things are nearly the same, except matrix multiplications are replaced by
convolutions”. And of course I saw tons of ready equations.

It was a little consoling, when I found out that I am not alone, for example: Hello, when
computing the gradients CNN, the weights need to be rotated, Why ? 8

\[\delta_j^l = f'(u_j^l) \odot conv2(\delta_j^{l+1}, rot180(k_j^{l+1}), 'full')\]

The answer on above question, that concerns the need of rotation on weights in gradient
computing, will be a result of this long post.

6.2. Back Propagation

We start from multilayer perceptron and counting delta errors on fingers:

[image: ../_images/cnn_1.png]

We see on above picture that \(\delta_1^1\) is proportional to deltas from next layer
that are scaled by weights.

But how do we connect concept of MLP with Convolutional Neural Network? Let’s play with MLP:

[image: ../_images/cnn_2.png]
Transforming Multilayer Perceptron to Convolutional Neural Network.

If you are not sure that after connections cutting and weights sharing we get one layer
Convolutional Neural Network, I hope that below picture will convince you:

[image: ../_images/cnn_3.png]
Feedforward in CNN is identical with convolution operation.

The idea behind this figure is to show, that such neural network configuration is identical
with a 2D convolution operation and weights are just filters (also called kernels, convolution
matrices, or masks).

Now we can come back to gradient computing by counting on fingers, but from now we will be only
focused on CNN. Let’s begin:

[image: ../_images/cnn_4.png]
Backpropagation also results with convolution.

No magic here, we have just summed in “blue layer” scaled by weights gradients from “orange”
layer. Same process as in MLP’s backpropagation. However, in the standard approach we talk about
dot products and here we have … yup, again convolution:

[image: ../_images/cnn_5.png]

[image: ../_images/cnn_6.png]

Yeah, it is a bit different convolution than in previous (forward) case. There we did so called
valid convolution, while here we do a full convolution (more about nomenclature here 9). What
is more, we rotate our kernel by 180 degrees. But still, we are talking about convolution!

Now, I have some good news and some bad news:

	you see (BTW, sorry for pictures aesthetics), that matrix dot products are replaced by
convolution operations both in feed forward and backpropagation.

	you know that seeing something and understanding something … yup, we are going now to
get our hands dirty and prove above statement before getting next, I recommend to read,
mentioned already in the disclaimer, chapter 2 10 of M. Nielsen book. I tried to make
all quantities to be consistent with work of Michael.

In the standard MLP, we can define an error of neuron \(j\) as:

\[\delta_j^l = \frac{\partial C}{\partial z_j^l}\]

where \(z_j^l\) is just:

\[z^l_j = \sum_{k} w_{jk}^l a_k^{l-1} + b_j^l\]

and for clarity, \(a_j^l = \sigma(z_j^l)\), where \(\sigma\) is an activation function
such as sigmoid, hyperbolic tangent or relu 11.

But here, we do not have MLP but CNN and matrix multiplications are replaced by
convolutions as we discussed before. So instead of \(z_j\) we do have a \(z_{x,y}\):

\[z_{x,y}^{l+1} = w^{l+1} * \sigma(z_{x,y}^l) + b_{x,y}^{l+1} =
\sum_{a} \sum_{b} w_{a,b}^{l+1}\sigma(z_{x-a,y-b}^l)+ b_{x,y}^{l+1}\]

Above equation is just a convolution operation during feedforward phase illustrated in the
above picture titled ‘Feedforward in CNN is identical with convolution operation’12

Now we can get to the point and answer the question Hello, when computing the gradients CNN,
the weights need to be rotated, Why ? 8

We start from statement:

\[\delta_{x,y}^l = \frac{\partial C}{\partial z_{x,y}^l} =
\sum_{x'} \sum_{y'}\frac{\partial C}{\partial z_{x',y'}^{l+1}}
\frac{\partial z_{x',y'}^{l+1}}{\partial z_{x,y}^l}\]

We know that \(z_{x,y}^l\) is in relation to \(z_{x',y'}^{l+1}\) which is indirectly
showed in the above picture titled ‘Backpropagation also results with convolution’.
So sums are the result of chain rule. Let’s move on:

\[\begin{split}\frac{\partial C}{\partial z_{x,y}^l} & =
\sum_{x'} \sum_{y'}\frac{\partial C}{\partial z_{x',y'}^{l+1}}
\frac{\partial z_{x',y'}^{l+1}}{\partial z_{x,y}^l} \\
& = \sum_{x'} \sum_{y'} \delta_{x',y'}^{l+1}
\frac{\partial(\sum_{a}\sum_{b}w_{a,b}^{l+1}
\sigma(z_{x'-a, y'-b}^l) + b_{x',y'}^{l+1})}{\partial z_{x,y}^l}\end{split}\]

First term is replaced by definition of error, while second has become large because we
put it here expression on \(z_{x',y'}^{l+1}\). However, we do not have to fear of this
big monster – all components of sums equal 0, except these ones that are
indexed: \(x=x'-a\) and \(y=y'-b\). So:

\[\sum_{x'} \sum_{y'} \delta_{x',y'}^{l+1}
\frac{\partial(\sum_{a}\sum_{b}w_{a,b}^{l+1}
\sigma(z_{x'-a, y'-b}^l) + b_{x',y'}^{l+1})}
{\partial z_{x,y}^l} = \sum_{x'} \sum_{y'}
\delta_{x',y'}^{l+1} w_{a,b}^{l+1} \sigma'(z_{x,y}^l)\]

If “math;`x=x’-a` and \(y=y'-b\) then it is obvious that \(a=x'-x\) and \(b=y'-y\)
so we can reformulate above equation to:

\[\sum_{x'} \sum_{y'} \delta_{x',y'}^{l+1} w_{a,b}^{l+1}
\sigma'(z_{x,y}^l) =\sum_{x'}\sum_{y'} \delta_{x',y'}^{l+1}
w_{x'-x,y'-y}^{l+1} \sigma'(z_{x,y}^l)\]

OK, our last equation is just …

\[\sum_{x'}\sum_{y'} \delta_{x',y'}^{l+1} w_{x'-x,y'-y}^{l+1}
\sigma'(z_{x,y}^l)= \delta^{l+1} * w_{-x,-y}^{l+1} \sigma'(z_{x,y}^l)\]

Where is the rotation of weights? Actually \(ROT180(w_{x,y}^{l+1}) = w_{-x, -y}^{l+1}\).

So the answer on question Hello, when computing the gradients CNN, the weights need to be rotated,
Why ? 8 is simple: the rotation of the weights just results from derivation of delta error in
Convolution Neural Network.

OK, we are really close to the end. One more ingredient of backpropagation algorithm is update
of weights \(\frac{\partial C}{\partial w_{a,b}^l}\):

\[\begin{split}\frac{\partial C}{\partial w_{a,b}^l}
& = \sum_{x} \sum_{y} \frac{\partial C}{\partial z_{x,y}^l}\frac{\partial z_{x,y}^l}{\partial w_{a,b}^l} \\
& = \sum_{x}\sum_{y}\delta_{x,y}^l \frac{\partial(\sum_{a'}\sum_{b'}w_{a',b'}^l\sigma(z_{x-a', y-b'}^l) +
b_{x,y}^l)}{\partial w_{a,b}^l} \\
& =\sum_{x}\sum_{y} \delta_{x,y}^l \sigma(z_{x-a,y-b}^{l-1}) \\
& = \delta_{a,b}^l * \sigma(z_{-a,-b}^{l-1}) \\
& =\delta_{a,b}^l * \sigma(ROT180(z_{a,b}^{l-1}))\end{split}\]

So paraphrasing the backpropagation algorithm 13 for CNN:

	Input \(x\): set the corresponding activation \(a^1\) for the input layer.

	Feedforward: for each \(l = 2,3, \cdots ,L\),
compute \(z_{x,y}^l = w^l * \sigma(z_{x,y}^{l-1}) + b_{x,y}^l\)
and \(a_{x,y}^l = \sigma(z_{x,y}^l)\)

	Output error \(\delta^L\): Compute the vector \(\delta^L = \nabla_a C \odot \sigma'(z^L)\)

	Backpropagate the error: For each \(l=L-1,L-2,\cdots ,2\),
compute \(\delta_{x,y}^l =\delta^{l+1} * ROT180(w_{x,y}^{l+1}) \sigma'(z_{x,y}^l)\)

	Output: The gradient of the cost function is given
by \(\frac{\partial C}{\partial w_{a,b}^l} =\delta_{a,b}^l * \sigma(ROT180(z_{a,b}^{l-1}))\)

6.3. Visualizing Features

It’s been shown many times that convolutional neural nets are very good at recognizing patterns
in order to classify images. But what patterns are they actually looking for?

I attempted to recreate the techniques described in 14 to project features in the convnet back to pixel space.

In order to do this, we first need to define and train a convolutional network. Due to lack of training
power, I couldn’t train on ImageNet and had to use CIFAR-10, a dataset of \(32x32\) images in 10
classes. The network structure was pretty standard: two convolutional layers, each with \(2x2\)
max pooling and a reLu gate, followed by a fully-connected layer and a softmax classifier.

We’re only trying to visualize the features in the convolutional layers, so we can effectively ignore
the fully-connected and softmax layers.

Features in a convolutional network are simply numbers that represent how present a certain pattern
is. The intuition behind displaying these features is pretty simple: we input one image, and retrieve
the matrix of features. We set every feature to 0 except one, and pass it backwards through the network
until reaching the pixel layer. The challenge here lies in how to effectively pass data backwards
through a convolutional network.

We can approach this problem step-by-step. There are three main portions to a convolutional layer.
The actual convolution, some max-pooling, and a nonlinearity (in our case, a rectified linear unit).
If we can figure out how to calculate the inputs to these units given their outputs, we can pass any
feature back to the pixel input.

[image: ../_images/cnn_7.png]
image from 14.

Here, the paper introduces a structure called a deconvolutional layer. However, in practice, this is
simply a regular convolutional layer with its filters transposed. By applying these transposed filters
to the output of a convolutional layer, the input can be retrieved.

A max-pool gate cannot be reversed on its own, as data about the non-maximum features is lost. The paper
describes a method in which the positions of each maximum is recorded and saved during forward propagation,
and when features are passed backwards, they are placed where the maximums had originated from. In my
recreation, I took an even simpler route and just set the whole \(2x2\) square equal to the
maximum activation.

Finally, the rectified linear unit. It’s the easiest one to reverse, we just need to pass the data through
a reLu again when moving backwards.

To test these techniques out, I trained a standard convolutional network on CIFAR-10. First, I passed one
of the training images, a dog, through the network and recorded the various features.

[image: ../_images/cnn_8.png]
our favorite dog.

[image: ../_images/cnn_9.png]
first convolutional layer (features 1-32).

As you can see, there are quite a variety of patterns the network is looking for. You can see evidence
of the original dog picture in these feature activations, most prominently the arms.

Now, let’s see how these features change when different images are passed through.

[image: ../_images/cnn_10.png]
first convolutional layer (feature #7).

This image shows all the different pixel representations of the activations of feature #7,
when a variety of images are used. It’s clear that this feature activates when green is present.
You can really see the original picture in this feature, since it probably just captures the overall
color green rather than some specific pattern.

Finally, to gain some intuition of how images activated each feature, I passed in a whole batch of
images and saved the maximum activations.

[image: ../_images/cnn_11.png]
maximum activations for 32 features.

Which features were activated by which images? There’s some interesting stuff going on here. Some
of the features are activated simply by the presence of a certain color. The green frog and red car
probably contained the most of their respective colors in the batch of images.

[image: ../_images/cnn_12.png]
two activations from the above image.

However, here are two features which are activated the most by a red frog image. The feature activations
show an outline, but one is in red and the other is in blue. Most likely, this feature isn’t getting
activated by the frog itself, but by the black background. Visualizing the features of a convolutional
network allows us to see such details.

So, what happens if we go farther, and look at the second convolutional layer?

[image: ../_images/cnn_13.png]
second convolutional layer (64 features).

I took the feature activations for the dog again, this time on the second convolutional layer. Already
some differences can be spotted. The presence of the original image here is much harder to see.

It’s a good sign that all the features are activated in different places. Ideally, we want features to
have minimal correlation with one another.

Finally, let’s examine how a second layer feature activates when various images are passed in.

[image: ../_images/cnn_14.png]
second convolutional layer (feature #9).

For the majority of these images, feature #9 activated at dark locations of the original image. However,
there are still outliers to this, so there is probably more to this feature than that.

For most features, it’s a lot harder to tell what part of the image activated it, since second layer
features are made of any linear combination of first layer features. I’m sure that if the network was
trained on a higher resolution image set, these features would become more apparent.

6.4. Code

try:
 import tensorflow as tf
 import numpy as np
 import pickle
 from tensorflow.python.platform import gfile
 from random import randint
 import os
 from scipy.misc import imsave
 from matplotlib import pyplot as plt
except ImportError:
 raise ValueError("Please install tensorflow and matplotlib.")

def unpickle(file):
 fo = open(file, 'rb')
 dict = pickle.load(fo)
 fo.close()
 return dict

def initWeight(shape):
 weights = tf.truncated_normal(shape, stddev=0.1)
 return tf.Variable(weights)

start with 0.1 so reLu isnt always 0
def initBias(shape):
 bias = tf.constant(0.1, shape=shape)
 return tf.Variable(bias)

the convolution with padding of 1 on each side, and moves by 1.
def conv2d(x, W):
 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding="SAME")

max pooling basically shrinks it by 2x, taking the highest value on each feature.
def maxPool2d(x):
 return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")

batchsize = 50
imagesize = 32
colors = 3

sess = tf.InteractiveSession()

img = tf.placeholder("float", shape=[None, imagesize, imagesize, colors])
lbl = tf.placeholder("float", shape=[None, 10])
for each 5x5 area, check for 32 features over 3 color channels
wConv1 = initWeight([5, 5, colors, 32])
bConv1 = initBias([32])
move the conv filter over the picture
conv1 = conv2d(img, wConv1)
adds bias
bias1 = conv1 + bConv1
relu = max(0,x), adds nonlinearality
relu1 = tf.nn.relu(bias1)
maxpool to 16x16
pool1 = maxPool2d(relu1)
second conv layer, takes a 16x16 with 32 layers, turns to 8x8 with 64 layers
wConv2 = initWeight([5, 5, 32, 64])
bConv2 = initBias([64])
conv2 = conv2d(pool1, wConv2)
bias2 = conv2 + bConv2
relu2 = tf.nn.relu(bias2)
pool2 = maxPool2d(relu2)
fully-connected is just a regular neural net: 8*8*64 for each training data
wFc1 = initWeight([(imagesize / 4) * (imagesize / 4) * 64, 1024])
bFc1 = initBias([1024])
reduce dimensions to flatten
pool2flat = tf.reshape(pool2, [-1, (imagesize / 4) * (imagesize / 4) * 64])
128 training set by 2304 data points
fc1 = tf.matmul(pool2flat, wFc1) + bFc1
relu3 = tf.nn.relu(fc1)
dropout removes duplicate weights
keepProb = tf.placeholder("float")
drop = tf.nn.dropout(relu3, keepProb)
wFc2 = initWeight([1024, 10])
bFc2 = initWeight([10])
softmax converts individual probabilities to percentages
guesses = tf.nn.softmax(tf.matmul(drop, wFc2) + bFc2)
how wrong it is
cross_entropy = -tf.reduce_sum(lbl * tf.log(guesses + 1e-9))
theres a lot of tensorflow optimizers such as gradient descent
adam is one of them
optimizer = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
array of bools, checking if each guess was correct
correct_prediction = tf.equal(tf.argmax(guesses, 1), tf.argmax(lbl, 1))
represent the correctness as a float [1,1,0,1] -> 0.75
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

sess.run(tf.initialize_all_variables())

batch = unpickle("cifar-10-batches-py/data_batch_1")

validationData = batch["data"][555:batchsize + 555]
validationRawLabel = batch["labels"][555:batchsize + 555]
validationLabel = np.zeros((batchsize, 10))
validationLabel[np.arange(batchsize), validationRawLabel] = 1
validationData = validationData / 255.0
validationData = np.reshape(validationData, [-1, 3, 32, 32])
validationData = np.swapaxes(validationData, 1, 3)

saver = tf.train.Saver()
saver.restore(sess, tf.train.latest_checkpoint(os.getcwd() + "/training/"))

train for 20000
print mnistbatch[0].shape
def train():
 for i in range(20000):
 randomint = randint(0, 10000 - batchsize - 1)
 trainingData = batch["data"][randomint:batchsize + randomint]
 rawlabel = batch["labels"][randomint:batchsize + randomint]
 trainingLabel = np.zeros((batchsize, 10))
 trainingLabel[np.arange(batchsize), rawlabel] = 1
 trainingData = trainingData / 255.0
 trainingData = np.reshape(trainingData, [-1, 3, 32, 32])
 trainingData = np.swapaxes(trainingData, 1, 3)

 if i % 10 == 0:
 train_accuracy = accuracy.eval(feed_dict={
 img: validationData, lbl: validationLabel, keepProb: 1.0})
 print("step %d, training accuracy %g" % (i, train_accuracy))

 if i % 50 == 0:
 saver.save(sess, os.getcwd() + "/training/train", global_step=i)

 optimizer.run(feed_dict={img: trainingData, lbl: trainingLabel, keepProb: 0.5})
 print(i)

def unpool(value, name='unpool'):
 """N-dimensional version of the unpooling operation from
 https://www.robots.ox.ac.uk/~vgg/rg/papers/Dosovitskiy_Learning_to_Generate_2015_CVPR_paper.pdf
 :param value: A Tensor of shape [b, d0, d1, ..., dn, ch]
 :return: A Tensor of shape [b, 2*d0, 2*d1, ..., 2*dn, ch]
 """
 with tf.name_scope(name) as scope:
 sh = value.get_shape().as_list()
 dim = len(sh[1:-1])
 out = (tf.reshape(value, [-1] + sh[-dim:]))
 for i in range(dim, 0, -1):
 out = tf.concat(i, [out, out])
 out_size = [-1] + [s * 2 for s in sh[1:-1]] + [sh[-1]]
 out = tf.reshape(out, out_size, name=scope)
 return out

def display():
 print("displaying")

 batchsizeFeatures = 50
 imageIndex = 56

 inputImage = batch["data"][imageIndex:imageIndex + batchsizeFeatures]
 inputImage = inputImage / 255.0
 inputImage = np.reshape(inputImage, [-1, 3, 32, 32])
 inputImage = np.swapaxes(inputImage, 1, 3)

 inputLabel = np.zeros((batchsize, 10))
 inputLabel[np.arange(1), batch["labels"][imageIndex:imageIndex + batchsizeFeatures]] = 1
 # inputLabel = batch["labels"][54]

 # prints a given image

 # saves pixel-representations of features from Conv layer 1
 featuresReLu1 = tf.placeholder("float", [None, 32, 32, 32])
 unReLu = tf.nn.relu(featuresReLu1)
 unBias = unReLu
 unConv = tf.nn.conv2d_transpose(unBias, wConv1, output_shape=[batchsizeFeatures, imagesize, imagesize, colors],
 strides=[1, 1, 1, 1], padding="SAME")
 activations1 = relu1.eval(feed_dict={img: inputImage, lbl: inputLabel, keepProb: 1.0})
 print(np.shape(activations1))

 # display features
 for i in range(32):
 isolated = activations1.copy()
 isolated[:, :, :, :i] = 0
 isolated[:, :, :, i + 1:] = 0
 print(np.shape(isolated))
 totals = np.sum(isolated, axis=(1, 2, 3))
 best = np.argmin(totals, axis=0)
 print(best)
 pixelactive = unConv.eval(feed_dict={featuresReLu1: isolated})
 # totals = np.sum(pixelactive,axis=(1,2,3))
 # best = np.argmax(totals,axis=0)
 # best = 0
 saveImage(pixelactive[best], "activ" + str(i) + ".png")
 saveImage(inputImage[best], "activ" + str(i) + "-base.png")

 # display same feature for many images
 # for i in xrange(batchsizeFeatures):
 # isolated = activations1.copy()
 # isolated[:,:,:,:6] = 0
 # isolated[:,:,:,7:] = 0
 # pixelactive = unConv.eval(feed_dict={featuresReLu1: isolated})
 # totals = np.sum(pixelactive,axis=(1,2,3))
 # best = np.argmax(totals,axis=0)
 # saveImage(pixelactive[i],"activ"+str(i)+".png")
 # saveImage(inputImage[i],"activ"+str(i)+"-base.png")

 # saves pixel-representations of features from Conv layer 2
 featuresReLu2 = tf.placeholder("float", [None, 16, 16, 64])
 unReLu2 = tf.nn.relu(featuresReLu2)
 unBias2 = unReLu2
 unConv2 = tf.nn.conv2d_transpose(unBias2, wConv2,
 output_shape=[batchsizeFeatures, imagesize / 2, imagesize / 2, 32],
 strides=[1, 1, 1, 1], padding="SAME")
 unPool = unpool(unConv2)
 unReLu = tf.nn.relu(unPool)
 unBias = unReLu
 unConv = tf.nn.conv2d_transpose(unBias, wConv1, output_shape=[batchsizeFeatures, imagesize, imagesize, colors],
 strides=[1, 1, 1, 1], padding="SAME")
 activations1 = relu2.eval(feed_dict={img: inputImage, lbl: inputLabel, keepProb: 1.0})
 print(np.shape(activations1))

 # display features
 # for i in xrange(64):
 # isolated = activations1.copy()
 # isolated[:,:,:,:i] = 0
 # isolated[:,:,:,i+1:] = 0
 # pixelactive = unConv.eval(feed_dict={featuresReLu2: isolated})
 # # totals = np.sum(pixelactive,axis=(1,2,3))
 # # best = np.argmax(totals,axis=0)
 # best = 0
 # saveImage(pixelactive[best],"activ"+str(i)+".png")
 # saveImage(inputImage[best],"activ"+str(i)+"-base.png")

 # display same feature for many images
 # for i in xrange(batchsizeFeatures):
 # isolated = activations1.copy()
 # isolated[:,:,:,:8] = 0
 # isolated[:,:,:,9:] = 0
 # pixelactive = unConv.eval(feed_dict={featuresReLu2: isolated})
 # totals = np.sum(pixelactive,axis=(1,2,3))
 # # best = np.argmax(totals,axis=0)
 # # best = 0
 # saveImage(pixelactive[i],"activ"+str(i)+".png")
 # saveImage(inputImage[i],"activ"+str(i)+"-base.png")

def saveImage(inputImage, name):
 # red = inputImage[:1024]
 # green = inputImage[1024:2048]
 # blue = inputImage[2048:]
 # formatted = np.zeros([3,32,32])
 # formatted[0] = np.reshape(red,[32,32])
 # formatted[1] = np.reshape(green,[32,32])
 # formatted[2] = np.reshape(blue,[32,32])
 # final = np.swapaxes(formatted,0,2)/255
 final = inputImage
 final = np.rot90(np.rot90(np.rot90(final)))
 imsave(name, final)

def main(argv=None):
 display()
 # train()

if __name__ == '__main__':
 tf.app.run()

	1

	http://caffe.berkeleyvision.org/

	2

	http://cs224d.stanford.edu/

	3

	https://www.udacity.com/course/deep-learning–ud730 [https://www.udacity.com/course/deep-learning--ud730]

	4

	http://www.deeplearningbook.org/

	5

	https://plus.google.com/+YoshuaBengio/posts

	6

	https://www.quora.com/session/Andrew-Ng/1

	7

	https://www.facebook.com/yann.lecun?fref=ts

	8(1,2,3)

	https://plus.google.com/111541909707081118542/posts/P8bZBNpg84Z

	9

	http://www.johnloomis.org/ece563/notes/filter/conv/convolution.html

	10

	http://neuralnetworksanddeeplearning.com/chap2.html

	11

	https://en.wikipedia.org/wiki/Rectifier_(neural_networks)

	12

	https://grzegorzgwardys.wordpress.com/2016/04/22/8/#unique-identifier

	13

	http://neuralnetworksanddeeplearning.com/chap2.html#the_backpropagation_algorithm

	14(1,2)

	Zeiler, Matthew D., and Rob Fergus. “Visualizing and understanding convolutional networks.” European conference on computer vision. Springer International Publishing, 2014.

7. Recurrent Neural Networks

Last post, we talked about the traditional feed-forward neural net and concepts
that form the basis of deep learning. These ideas are extremely powerful! We saw
how feed-forward convolutional neural networks have set records on many difficult
tasks including handwritten digit recognition and object classification. And even
today, feed-forward neural networks consistently outperform virtually all other
approaches to solving classification tasks.

And yet, despite their well celebrated successes, most experts would agree that
feed-forward neural nets are still rather limited in what they can achieve. Why?
Because the task of “classification” is only one small component of the incredible
computational power of the human brain. We’re wired not only to recognize individual
instances but to also analyze entire sequences of inputs. These sequences are ultra
rich in information, have complex time dependencies, and can be of arbitrary length.
For example, vision, motor control, speech, and comprehension all require us to process
high-dimensional inputs as they change over time. This is something that feed-forward
nets are incredibly poor at modeling.

7.1. What is a Recurrent Neural Net?

One quite promising solution to tackling the problem of learning sequences of information
is the recurrent neural network (RNN). RNNs are built on the same computational unit as
the feed forward neural net, but differ in the architecture of how these neurons are
connected to one another. Feed forward neural networks were organized in layers, where
information flowed unidirectionally from input units to output units. There were no undirected
cycles in the connectivity patterns. Although neurons in the brain do contain undirected
cycles as well as connections within layers, we chose to impose these restrictions to simplify
the training process at the expense of computational versatility. Thus, to create more powerful
compuational systems, we allow RNNs to break these artificially imposed rules. RNNs do not have
to be organized in layers and directed cycles are allowed. In fact, neurons are actually allowed
to be connected to themselves.

[image: ../_images/rnn_0.png]
An example schematic of a RNN with directed cycles and self connectivities.

The RNN consists of a bunch of input units, labeled \(u_1, \cdots ,u_K\), and output units,
labeled \(y_1, \codts ,y_L\). There are also the hidden units \(x_1, \cdots , x_N\), which
do most of the interesting work. You’ll notice that the illustration shows a unidirectional flow of
information from the input units to the hidden units as well as another unidirectional flow of
information from the hidden units to the output units. In some cases, RNNs break the latter restriction
with connections leading from the output units back to the hidden units. These are called
“backprojections,” and don’t make the analysis of RNNs too much more complicated. The same techniques
we will discuss here will also apply to RNNs with backprojections.

There are a lot of pretty challenging technical difficulties that arise when training recurrent neural
networks, and it’s still a very active area of research. Hopefully by the end of this article, we’ll have
a solid understanding of how RNNs work and some of the results that have been achieved!

7.2. Simulating a Recurrent Neural Network

Now that we understand how a RNN is structured, we can discuss how it’s able to simulate a sequence of
events. Let’s consider a neat toy example of a recurrent neural net acting like an timer module, a classic
example designed by Herbert Jaeger (his original manuscript can be found in 1).

[image: ../_images/rnn_1.png]
A simple example of how a perfect RNN would simulate a timer.

In this case, we have two inputs. The input \(u1\) corresponds to a binary switch which spikes to
one when the RNN is supposed to start the timer. The input \(u2\) is a discrete variable that varies
between \(0.1\) and \(1.0\) inclusive which corresponds to how long the output should be turned
on if the timer is started at that instant. The RNN’s specification requires it to turn on the output for
a duration of \(1000 u_2\). Finally, the outputs in the training examples toggle between \(0\) (off)
and \(0.5\) (on).

But how exactly would a neural net achieve this calculation? First, the RNN has all of its hidden activities
initialized to some pre-determined state. Then at each time step (time \(t=1,2,\cdots\)), every hidden
unit sends its current activity through all its outgoing connections. It then recalculate its new activity by
computing the weighted sum (logit) of its inputs from other neurons (including itself if there is a self
connection) and the current values of the inputs, and then feeding this value into a neuron-specific function
(a straightforward copy operation, sigmoid transform, soft-max, etc.). Because the previous vector of activities
is used to compute the vector of activies in each time step, RNNs are able to retain memory of previous events
and utlize this memory in making decisions.

Clearly a neural net would be unlikely to perfectly perform according to specification, but you can imagine it
outputting a result (orange) that looks pretty darn close to the ground truth (blue) after training the RNN with
hundreds or thousands of examples. We’ll talk more about approaches to training RNNs in the following sections.

[image: ../_images/rnn_2.png]
An example fit for how a well-trained RNN might approximate the output of a test case.

At this point, you’re probably thinking that this is pretty cool, but it’s still a pretty contrived example.
What’s the strategy for using RNNs in practice? We examine real systems and their behaviors over time in
response to stimuli. For example, you might teach a RNN to transcribe audio into text by building a dataset
(in a sense, observing the response of the human auditory system in response to the inputs in the training set).
You may also use a trained neural net to model a system’s reactions under novel stimuli.

[image: ../_images/rnn_3.png]
How a RNN might be used in practice.

But if you’re creative, you can use RNNs in ways that seem pretty spectacular. For example, a specialized
kind of RNN, called a long short-term RNN or LSTM, has been used to achieve spectacular rates of data compression
(although the current approach to RNN-based compression does take a significant amount time). For those itching
to learn more, we’ll talk about the LSTM architecture in a later section.

7.3. Training a RNN - Backpropagation Through Time

Great, now we understand what a RNN is and how it works, but how do we train a RNN in the first place to
achieve all of these spectacular feats? Specifically, how do we determine the weights that are on each of
the connections? And how do we choose the initial activities of all of the hidden units? Our first instinct
might be to use backpropagation directly, after all it worked quite well when we used it on feed forward neural nets.

The problem with using backpropagation here is that we have cyclical dependencies. In feed forward nets, when
we calculated the error derivatives with respect to the weights in one layer, we could express them completely
in terms of the error derivatives from the layer above. In a recurrent neural network, we don’t have this nice
layering because the neurons do not form a directed acyclic graph. Trying to backpropagate through a RNN could
force us to try to express an error derivative in terms of itself, which doesn’t make for easy analysis.

So how can we use backpropagation for RNNs, if at all? The answer lies in employing a clever transformation, where
we convert our RNN into a new structure that’s essentially a feed-forward neural network! We call this strategy
“unrolling” the RNN through time, and an example can be seen in the figure below (with only one input/output per
time step to simplify the illustration):

[image: ../_images/rnn_4.png]
An example of “unrolling” and RNN through time to use backpropagation.

The process is actually quite simple, but it has a profound impact on our ability to analyze the neural network.
We take the RNN’s inputs, outputs, and hidden units and replicate it for every time step. These replications
correspond to layers in our new feed forward neural network. We then connect hidden units as follows. If the
original RNN has a connection of weight \(w\) from neuron \(i\) to neuron \(j\), in our feed forward
neural net, we draw a connection of weight \(w\) from neuron \(i\) in every layer \(t_k\) to
neuron \(j\) in every layer \(t_k+1\).

Thus, to train our RNN, we randomly initialize the weights, “unroll” it into a feed forward neural net, and
backpropogate to determine the optimal weights! To determine the initializations for the hidden states at time 0,
we can treat the initial activities as parameters fed into the feed forward network at the lowest layer and
backpropagate to determine their optimal values as well!

We run into a problem however, which is that after every batch of training examples we use, we need to modify the
weights based on the error derivatives we calculated. In our feed-forward net, we have sets of connections that
all correspond to the same connection in the original RNN. The error derivatives calculated with respect to their
weights, however, are not guaranteed to be equal, which means we might be modifying them by different amounts.
We definitely don’t want to be doing that!

We can get around this challenge, by averaging (or summing) the error derivatives over all the connections that
belong to the same set. This means that after each batch, we modify corresponding connections by the same amount,
so if they were initialized to the same value, they will end up at the same value. This solves our problem :)

7.4. The Problems with Deep Backpropagation

Unlike traditional feed forward nets, the feed forward nets generated by unrolling RNNs can be enormously deep.
This gives rise to a serious practical issue: it can be obscenely difficult to train using the backpropagation
through time approach. Let’s take a step back and try to understand why.

Let’s try to train a RNN to do a very primitive task. Let’s give the RNN a single hidden unit with a bias term,
and we’ll connect it to itself and a singular output. We want this neural network to output a fixed target value
after 50 steps, let’s say 0.7. We’ll use the squared error of the output on the 50th time step as our error
function, which we can plot as a surface over the value of the weight and the bias:

[image: ../_images/rnn_5.png]
The problematic error surface of a simple RNN.

Now, let’s say we started at the red star (using a random initialization of weights). You’ll notice that as we
use gradient descent, we get closer and closer to the local minimum on the surface. But suddenly, when we slightly
overreach the valley and hit the cliff, we are presented with a massive gradient in the opposite direction. This
forces us to bounce extremely far away from the local minimum. And once we’re in nowhere land, we quickly find that
the gradients are so vanishingly small that coming close again will take a seemingly endless amount of time. This
issue is called the problem of exploding and vanishing gradients. You can imagine perhaps controlling this issue by
rescaling gradients to never exceed a maximal magnitude (see the dotted path after hitting the cliff), but this
approach still doesn’t perform spectacularly well, especially in more complex RNNs. For a more mathematical treatment
of this issue, check out this paper. 2

7.5. Long Short Term Memory

To address these problems, researchers proposed a modified architecture for recurrent neural networks to help
bridge long time lags between forcing inputs and appropriate responses and protect against exploding gradients.
The architecture forces constant error flow (thus, neither exploding nor vanishing) through the internal state
of special memory units. This long short term memory (LSTM) architecture utlized units that were structured as
follows:

[image: ../_images/rnn_6.png]
Structure of the basic LSTM unit.

The LSTM unit consists of a memory cell which attempts to store information for extended periods of time.
Access to this memory cell is protected by specialized gate neurons - the keep, write, and read gates - which
are all logistic units. These gate cells, instead of sending their activities as inputs to other neurons, set
the weights on edges connecting the rest of the neural net to the memory cell. The memory cell is a linear neuron
that has a connection to itself. When the keep gate is turned on (with an activity of 1), the self connection has
weight one and the memory cell writes its contents into itself. When the keep gate outputs a zero, the memory
cell forgets its previous contents. The write gate allows the rest of the neural net to write into the memory
cell when it outputs a 1 while the read gate allows the rest of the neural net to read from the memory cell when
it outputs a 1.

So how exactly does this force a constant error flow through time to locally protect against exploding and
vanishing gradients? To visualize this, let’s unroll the LSTM unit through time:

[image: ../_images/rnn_7.png]
Unrolling the LSTM unit through the time domain.

At first, the keep gate is set to 0 and the write gate is set to 1, which places 4.2 into the memory cell.
This value is retained in the memory cell by a subsequent keep value of 1 and protected from read/write by values
of 0. Finally, the cell is read and then cleared. Now we try to follow the backpropagation from the point of
loading 4.2 into the memory cell to the point of reading 4.2 from the cell and its subsequent clearing. We realize
that due to the linear nature of the memory neuron, the error derivative that we receive from the read point
backpropagates with negligible change until the write point because the weights of the connections connecting the
memory cell through all the time layers have weights approximately equal to 1 (approximate because of the logistic
output of the keep gate). As a result, we can locally preserve the error derivatives over hundreds of steps without
having to worry about exploding or vanishing gradients. You can see the action of this method successfully reading
cursive handwriting (Vedio [https://youtu.be/mLxsbWAYIpw]).

The animation, borrowed from neural networks expert Alex Graves, requires a little bit of explanation:

	Row 1: Shows when the letters are recognized

	Row 2: Shows the states of some of the memory cells (Notice how they get reset when a character is recognized!)

	Row 3: Shows the writing as it’s being analyzed by the LSTM RNN

	Row 4: This shows the gradient backpropagated to the inputs from the most active character of the upper
soft-max layer (This tells you which data points are providing the most influence on your current
decision for the character)

The LSTM RNN does quite well, and it’s been applied in lots of other places as well. As we discussed earlier,
deep architectures for LSTM RNNs have been used to achieve pretty astonishing data compression rates. For those
who are interested in learning more about this particular application for LSTM RNNs can check out this paper. 3

7.6. Conclusions

How to effectively train neural nets remains an area of active research and has resulted in a number of
alternative approaches, with no clear winner. The LSTM RNN architecture is one such approach to improving the
training of RNNs. Another approach is to use a much better optimzer that can deal with exploding and vanishing
gradients. Hessian-free optimization tries to detect directions with a small gradient, but even smaller curvature.
This problem allows it to perform much better than naive gradient descent. A third approach involves a very
careful initialization of the weights in hopes that it will allow us to avoid the problem of exploding and
vanishing gradients in the first place (e.g. echo state networks, momentum based approaches).

	1

	Jaeger, Herbert. Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the” echo state network” approach. Vol. 5. GMD-Forschungszentrum Informationstechnik, 2002.

	2

	Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio. “On the difficulty of training recurrent neural networks.” ICML (3) 28 (2013): 1310-1318.

	3

	Graves, Alex. “Generating sequences with recurrent neural networks.” arXiv preprint arXiv:1308.0850 (2013).

npdl.layers

	Base Layers

	Core Layers

	Convolution Layers

	Embedding Layer

	Normalization Layer

	Pooling Layers

	Recurrent Layers

	Shape Layers

Base Layers

	Layer

	The Layer class represents a single layer of a neural network.

Core Layers

	Linear

	A fully connected layer implemented as the dot product of inputs and weights.

	Dense

	A fully connected layer implemented as the dot product of inputs and weights.

	Softmax

	A fully connected layer implemented as the dot product of inputs and weights.

	Dropout

	A dropout layer.

Convolution Layers

	Convolution

	Convolution operator for filtering windows of two-dimensional inputs.

Embedding Layer

	Embedding

	

Normalization Layer

	BatchNormal

	Batch normalization layer (Ioffe and Szegedy, 2014) [R1] .

Pooling Layers

	MeanPooling

	Average pooling operation for spatial data.

	MaxPooling

	Max pooling operation for spatial data.

Recurrent Layers

	Recurrent

	A recurrent neural network (RNN) is a class of artificial neural network where connections between units form a directed cycle.

	SimpleRNN

	Fully-connected RNN where the output is to be fed back to input.

	GRU

	Gated recurrent units (GRUs) are a gating mechanism in recurrent neural networks, introduced in 2014.

	LSTM

	Bacth LSTM, support mask, but not support training.

	BatchLSTM

	Batch LSTM, support training, but not support mask.

Shape Layers

	Flatten

	

Base Layers

	
class npdl.layers.Layer[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/layers/base.py#L4-L74]

	The Layer class represents a single layer of a neural network. It
should be subclassed when implementing new types of layers.

Because each layer can keep track of the layer(s) feeding into it, a
network’s output Layer instance can double as a handle to the full
network.

	
backward(pre_grad, *args, **kwargs)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/layers/base.py#L21-L23]

	calculate the input gradient

	
connect_to(prev_layer)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/layers/base.py#L25-L34]

	Propagates the given input through this layer (and only this layer).

	Parameters

	prev_layer : previous layer

The previous layer to propagate through this layer.

	
forward(input, *args, **kwargs)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/layers/base.py#L17-L19]

	Calculate layer output for given input (forward propagation).

	
classmethod from_json(config)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/layers/base.py#L40-L43]

	From configuration

	
grads[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/layers.py]

	Get layer parameter gradients as calculated from backward().

	
param_grads[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/layers.py]

	Layer parameters and corresponding gradients.

	
params[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/layers.py]

	Layer parameters.

Returns a list of numpy.array variables or expressions that
parameterize the layer.

	Returns

	list of numpy.array variables or expressions

A list of variables that parameterize the layer

Notes

For layers without any parameters, this will return an empty list.

	
to_json()[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/layers/base.py#L36-L38]

	To configuration

Core Layers

	
class npdl.layers.Linear(n_out, n_in=None, init=’glorot_uniform’)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/layers/core.py#L13-L90]

	A fully connected layer implemented as the dot product of inputs and
weights.

	Parameters

	n_out : (int, tuple)

Desired size or shape of layer output

n_in : (int, tuple) or None

The layer input size feeding into this layer

init : (Initializer, optional)

Initializer object to use for initializing layer weights

	
backward(pre_grad, *args, **kwargs)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/layers/core.py#L66-L82]

	Apply the backward pass transformation to the input data.

	Parameters

	pre_grad : numpy.array

deltas back propagated from the adjacent higher layer

	Returns

	numpy.array

deltas to propagate to the adjacent lower layer

	
forward(input, *args, **kwargs)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/layers/core.py#L50-L64]

	Apply the forward pass transformation to the input data.

	Parameters

	input : numpy.array

input data

	Returns

	numpy.array

output data

	
class npdl.layers.Dense(n_out, n_in=None, init=’glorot_uniform’, activation=’tanh’)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/layers/core.py#L93-L174]

	A fully connected layer implemented as the dot product of inputs and
weights. Generally used to implemenent nonlinearities for layer post activations.

	Parameters

	n_out : int

Desired size or shape of layer output

n_in : int, or None

The layer input size feeding into this layer

activation : str, or npdl.activatns.Activation

Defaults to Tanh

init : str, or npdl.initializations.Initializer

Initializer object to use for initializing layer weights

	
backward(pre_grad, *args, **kwargs)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/layers/core.py#L149-L166]

	Apply the backward pass transformation to the input data.

	Parameters

	pre_grad : numpy.array

deltas back propagated from the adjacent higher layer

	Returns

	numpy.array

deltas to propagate to the adjacent lower layer

	
forward(input, *args, **kwargs)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/layers/core.py#L131-L147]

	Apply the forward pass transformation to the input data.

	Parameters

	input : numpy.array

input data

	Returns

	numpy.array

output data

	
class npdl.layers.Softmax(n_out, n_in=None, init=’glorot_uniform’)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/layers/core.py#L177-L192]

	A fully connected layer implemented as the dot product of inputs and
weights.

	Parameters

	n_out : int

Desired size or shape of layer output

n_in : int, or None

The layer input size feeding into this layer

init : str, or npdl.initializations.Initializer

Initializer object to use for initializing layer weights

	
class npdl.layers.Dropout(p=0.0)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/layers/core.py#L195-L249]

	A dropout layer.

Applies an element-wise multiplication of inputs with a keep mask.

A keep mask is a tensor of ones and zeros of the same shape as the input.

Each forward() call generates an new keep mask stochastically where there
distribution of ones in the mask is controlled by the keep param.

	Parameters

	p : float

fraction of the inputs that should be stochastically kept.

	
forward(input, train=True, *args, **kwargs)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/layers/core.py#L221-L243]

	Apply the forward pass transformation to the input data.

	Parameters

	input : numpy.array

input data

train : bool

is inference only

	Returns

	numpy.array

output data

Convolution Layers

	
class npdl.layers.Convolution(nb_filter, filter_size, input_shape=None, stride=1, init=’glorot_uniform’, activation=’relu’)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/layers/convolution.py#L11-L136]

	Convolution operator for filtering windows of two-dimensional inputs.

When using this layer as the first layer in a model,
provide the keyword argument input_shape
(tuple of integers, does not include the sample axis),
e.g. input_shape=(3, 128, 128) for 128x128 RGB pictures.

Embedding Layer

	
class npdl.layers.Embedding(embed_words=None, static=None, input_size=None, n_out=None, nb_batch=None, nb_seq=None, init=’uniform’)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/layers/embedding.py#L10-L55]

	

Normalization Layer

	
class npdl.layers.BatchNormal(epsilon=1e-06, momentum=0.9, axis=0, beta_init=’zero’, gamma_init=’one’)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/layers/normalization.py#L10-L143]

	Batch normalization layer (Ioffe and Szegedy, 2014) [R11] .

Normalize the activations of the previous layer at each batch,
i.e. applies a transformation that maintains the mean activation
close to 0 and the activation standard deviation close to 1.

	Parameters

	epsilon ： small float > 0

Fuzz parameter. npdl expects epsilon >= 1e-5.

axis : integer

axis along which to normalize in mode 0. For instance,
if your input tensor has shape (samples, channels, rows, cols),
set axis to 1 to normalize per feature map (channels axis).

momentum : float

momentum in the computation of the
exponential average of the mean and standard deviation
of the data, for feature-wise normalization.

beta_init : npdl.initializations.Initializer

name of initialization function for shift parameter, or alternatively,
npdl function to use for weights initialization.

gamma_init : npdl.initializations.Initializer

name of initialization function for scale parameter, or alternatively,
npdl function to use for weights initialization.

Input shape

Arbitrary. Use the keyword argument input_shape
(tuple of integers, does not include the samples axis)
when using this layer as the first layer in a model.

Output shape

Same shape as input.

References

	R11(1,2)

	[Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift](https://arxiv.org/abs/1502.03167)

Pooling Layers

	
class npdl.layers.MeanPooling(pool_size)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/layers/pooling.py#L9-L107]

	Average pooling operation for spatial data.

	Parameters

	pool_size : tuple of 2 integers,

factors by which to downscale (vertical, horizontal).
(2, 2) will halve the image in each dimension.

	Returns

	4D numpy.array

with shape (nb_samples, channels, pooled_rows, pooled_cols) if dim_ordering=’th’
or 4D tensor with shape:
(samples, pooled_rows, pooled_cols, channels) if dim_ordering=’tf’.

	
class npdl.layers.MaxPooling(pool_size)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/layers/pooling.py#L110-L209]

	Max pooling operation for spatial data.

	Parameters

	pool_size : tuple of 2 integers,

factors by which to downscale (vertical, horizontal).
(2, 2) will halve the image in each dimension.

	Returns

	4D numpy.array

with shape (nb_samples, channels, pooled_rows, pooled_cols) if dim_ordering=’th’
or 4D tensor with shape:
(samples, pooled_rows, pooled_cols, channels) if dim_ordering=’tf’.

Recurrent Layers

	
class npdl.layers.Recurrent(n_out, n_in=None, nb_batch=None, nb_seq=None, init=’glorot_uniform’, inner_init=’orthogonal’, activation=’tanh’, return_sequence=False)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/layers/recurrent.py#L13-L83]

	A recurrent neural network (RNN) is a class of artificial neural
network where connections between units form a directed cycle.
This creates an internal state of the network which allows it to
exhibit dynamic temporal behavior. Unlike feedforward neural networks,
RNNs can use their internal memory to process arbitrary sequences of
inputs. This makes them applicable to tasks such as unsegmented
connected handwriting recognition[R12]_ or speech recognition.[R13]_

	Parameters

	n_out : int

hidden number

n_in : int or None

input dimension

nb_batch : int or None

batch size

nb_seq : int or None

sequent length

init : npdl.intializations.Initliazer

init function

inner_init : npdl.intializations.Initliazer

inner init function, between hidden to hidden

activation : npdl.activations.Activation

activation function

return_sequence : bool

return total sequence or not.

References

	R12

	A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke,
J. Schmidhuber. A Novel Connectionist System for Improved
Unconstrained Handwriting Recognition. IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 31, no. 5, 2009.

	R13

	H. Sak and A. W. Senior and F. Beaufays. Long short-term memory
recurrent neural network architectures for large scale acoustic
modeling. Proc. Interspeech, pp338-342, Singapore, Sept. 2010

	
class npdl.layers.SimpleRNN(**kwargs)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/layers/recurrent.py#L86-L211]

	Fully-connected RNN where the output is to be fed back to input.

\[o_t = tanh(U_t x_t + W_t o_{t-1} + b_t)\]

	Parameters

	output_dim: dimension of the internal projections and the final output.

init: weight initialization function.

Can be the name of an existing function (str),
or a npdl function.

inner_init: initialization function of the inner cells.

activation: activation function.

Can be the name of an existing function (str),
or a npdl function.

return_sequence: if `return_sequences`, 3D `numpy.array` with shape

(batch_size, timesteps, units) will be returned. Else, return
2D numpy.array with shape (batch_size, units).

References

	R14

	A Theoretically Grounded Application of Dropout in Recurrent
Neural Networks. http://arxiv.org/abs/1512.05287

	
class npdl.layers.GRU(gate_activation=’sigmoid’, need_grad=True, **kwargs)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/layers/recurrent.py#L214-L328]

	Gated recurrent units (GRUs) are a gating mechanism in recurrent neural
networks, introduced in 2014. Their performance on polyphonic music modeling
and speech signal modeling was found to be similar to that of long short-term
memory.[R15]_ They have fewer parameters than LSTM, as they lack an output
gate.[R16]_

\[z_t = \sigma(U_z x_t + W_z h_{t-1} + b_z)\]

\[z_t = r_t = \sigma(U_r x_t + W_r h_{t-1} + b_r)\]

\[h_t = tanh(U_h x_t + W_h (s_{t-1} \odot r_t) + b_h)\]

\[s_t = (1- z_t) \odot h_t + z_t \odot s_{t-1}\]

	Parameters

	gate_activation : npdl.activations.Activation

Gate activation.

need_grad ： bool

If True, will calculate gradients.

References

	R15

	Chung, Junyoung; Gulcehre, Caglar; Cho, KyungHyun; Bengio, Yoshua
(2014). “Empirical Evaluation of Gated Recurrent Neural Networks on
Sequence Modeling”. arXiv:1412.3555 Freely accessible [cs.NE].

	R16

	“Recurrent Neural Network Tutorial, Part 4 – Implementing a GRU/LSTM
RNN with Python and Theano – WildML”. Wildml.com. Retrieved
May 18, 2016.

	
class npdl.layers.LSTM(gate_activation=’sigmoid’, need_grad=True, forget_bias_num=1, **kwargs)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/layers/recurrent.py#L331-L496]

	Bacth LSTM, support mask, but not support training.

Long short-term memory (LSTM) is a recurrent neural network (RNN)
architecture (an artificial neural network) proposed in 1997 by Sepp
Hochreiter and Jürgen Schmidhuber [R17] and further improved in 2000
by Felix Gers et al.[R18]_ Like most RNNs, a LSTM network is universal
in the sense that given enough network units it can compute anything
a conventional computer can compute, provided it has the proper weight
matrix, which may be viewed as its program.

\[f_t = \sigma(U_f x_t + W_f h_{t-1} + b_f)\]

\[i_t = \sigma(U_i x_t + W_i h_{t-1} + b_f)\]

\[o_t = \sigma(U_o x_t + W_o h_{t-1} + b_h)\]

\[g_t = tanh(U_g x_t + W_g h_{t-1} + b_g)\]

\[c_t = f_t \odot c_{t-1} + i_t \odot g_t\]

\[h_t = o_t \odot tanh(c_t)\]

	Parameters

	gate_activation : npdl.activations.Activation

Gate activation.

need_grad ： bool

If True, will calculate gradients.

forget_bias_num : int

integer.

References

	R17(1,2)

	Sepp Hochreiter; Jürgen Schmidhuber (1997). “Long short-term
memory”. Neural Computation. 9 (8): 1735–1780. doi:10.1162/ne
co.1997.9.8.1735. PMID 9377276.

	R18

	Felix A. Gers; Jürgen Schmidhuber; Fred Cummins (2000). “Learning
to Forget: Continual Prediction with LSTM”. Neural Computation. 12
(10): 2451–2471. doi:10.1162/089976600300015015.

	
class npdl.layers.BatchLSTM(gate_activation=’sigmoid’, need_grad=True, forget_bias_num=1, **kwargs)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/layers/recurrent.py#L499-L748]

	Batch LSTM, support training, but not support mask.

	Parameters

	gate_activation : npdl.activations.Activation

Gate activation.

need_grad ： bool

If True, will calculate gradients.

forget_bias_num : int

integer.

References

	R19

	Sepp Hochreiter; Jürgen Schmidhuber (1997). “Long short-term
memory”. Neural Computation. 9 (8): 1735–1780. doi:10.1162/ne
co.1997.9.8.1735. PMID 9377276.

	R20

	Felix A. Gers; Jürgen Schmidhuber; Fred Cummins (2000). “Learning
to Forget: Continual Prediction with LSTM”. Neural Computation. 12
(10): 2451–2471. doi:10.1162/089976600300015015.

	
backward(pre_grad, dcn=None, dhn=None)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/layers/recurrent.py#L658-L740]

	Backward propagation.

	Parameters

	pre_grad : numpy.array

Gradients propagated to this layer.

dcn : numpy.array

Gradients of cell state at n time step.

dhn : numpy.array

Gradients of hidden state at n time step.

	Returns

	numpy.array

The gradients propagated to previous layer.

	
connect_to(prev_layer=None)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/layers/recurrent.py#L539-L575]

	Connection to the previous layer.

	Parameters

	prev_layer : npdl.layers.Layer or None

Previous layer.

AllW : numpy.array

	type

	i

	f

	o

	g

	bias

	
	
	
	

	x2h

	
	
	
	

	h2h

	
	
	
	

	
forward(input, c0=None, h0=None)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/layers/recurrent.py#L577-L656]

	Forward propagation.

	Parameters

	input : numpy.array

input should be of shape (nb_batch,nb_seq,n_in)

c0 : numpy.array or None

init cell state

h0 : numpy.array or None

init hidden state

	Returns

	numpy.array

Forward results.

Shape Layers

	
class npdl.layers.Flatten(outdim=2)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/layers/shape.py#L9-L35]

	

npdl.activations

Non-linear activation functions for artificial neurons.

A function used to transform the activation level of a unit (neuron) into an
output signal. Typically, activation functions have a “squashing” effect.
Together with the PSP function (which is applied first) this defines the
unit type. Neural Networks supports a wide range of activation functions.

Activations

	Activation()

	Base class for activations.

	Sigmoid()

	Sigmoid activation function.

	Tanh()

	Tanh activation function.

	ReLU()

	Rectify activation function.

	Linear()

	Linear activation function.

	Softmax()

	Softmax activation function.

	Elliot([steepness])

	A fast approximation of sigmoid.

	SymmetricElliot([steepness])

	Elliot symmetric sigmoid transfer function.

	SoftPlus()

	Softplus activation function.

	SoftSign()

	SoftSign activation function.

Detailed Description

	
class npdl.activations.Activation[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/activations.py#L22-L52]

	Base class for activations.

	
derivative(input=None)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/activations.py#L40-L49]

	Backward step.

	Parameters

	input : numpy.array, optional.

If provide input, this function will not use last_forward.

	
forward(input)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/activations.py#L29-L38]

	Forward Step.

	Parameters

	input : numpy.array

the input matrix.

	
class npdl.activations.Sigmoid[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/activations.py#L59-L100]

	Sigmoid activation function.

	
derivative(input=None)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/activations.py#L87-L100]

	The derivative of sigmoid is

\[\begin{split}\frac{dy}{dx} & = (1-\varphi(x)) \otimes \varphi(x) \\
& = \frac{e^{-x}}{(1+e^{-x})^2} \\
& = \frac{e^x}{(1+e^x)^2}\end{split}\]

	Returns

	float32

The derivative of sigmoid function.

	
forward(input, *args, **kwargs)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/activations.py#L66-L85]

	A sigmoid function is a mathematical function having a
characteristic “S”-shaped curve or sigmoid curve. Often,
sigmoid function refers to the special case of the logistic
function and defined by the formula \(\varphi(x) = \frac{1}{1 + e^{-x}}\)
(given the input \(x\)).

	Parameters

	input : float32

The activation (the summed, weighted input of a neuron).

	Returns

	float32 in [0, 1]

The output of the sigmoid function applied to the activation.

class Sigmoid(Activation):
 """Sigmoid activation function.
 """

 def __init__(self):
 super(Sigmoid, self).__init__()

 def forward(self, input, *args, **kwargs):
 """A sigmoid function is a mathematical function having a
 characteristic "S"-shaped curve or sigmoid curve. Often,
 sigmoid function refers to the special case of the logistic
 function and defined by the formula :math:`\\varphi(x) = \\frac{1}{1 + e^{-x}}`
 (given the input :math:`x`).

 Parameters

 input : float32
 The activation (the summed, weighted input of a neuron).

 Returns

 float32 in [0, 1]
 The output of the sigmoid function applied to the activation.
 """

 self.last_forward = 1.0 / (1.0 + np.exp(-input))
 return self.last_forward

 def derivative(self, input=None):
 """The derivative of sigmoid is

 .. math:: \\frac{dy}{dx} & = (1-\\varphi(x)) \\otimes \\varphi(x) \\\\
 & = \\frac{e^{-x}}{(1+e^{-x})^2} \\\\
 & = \\frac{e^x}{(1+e^x)^2}

 Returns

 float32
 The derivative of sigmoid function.
 """
 last_forward = self.forward(input) if input else self.last_forward
 return np.multiply(last_forward, 1 - last_forward)

	
class npdl.activations.Tanh[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/activations.py#L107-L156]

	Tanh activation function.

The hyperbolic tangent function is an old mathematical function.
It was first used in the work by L’Abbe Sauri (1774).

	
derivative(input=None)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/activations.py#L142-L156]

	The derivative of tanh() functions is

\[\begin{split}\frac{d}{dx} tanh(x) & = \frac{d}{dx} \frac{sinh(x)}{cosh(x)} \\
& = \frac{cosh(x) \frac{d}{dx}sinh(x) - sinh(x) \frac{d}{dx}cosh(x) }{ cosh^2(x)} \\
& = \frac{ cosh(x) cosh(x) - sinh(x) sinh(x) }{ cosh^2(x)} \\
& = 1 - tanh^2(x) \end{split}\]

	Returns

	float32

The derivative of tanh function.

	
forward(input)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/activations.py#L117-L140]

	This function is easily defined as the ratio between the hyperbolic
sine and the cosine functions (or expanded, as the ratio of the
half‐difference and half‐sum of two exponential functions in the
points \(z\) and \(-z\)):

\[\begin{split}tanh(z) & = \frac{sinh(z)}{cosh(z)} \\
& = \frac{e^z - e^{-z}}{e^z + e^{-z}}\end{split}\]

Fortunately, numpy provides tanh() methods. So in our implementation,
we directly use \(\varphi(x) = \tanh(x)\).

	Parameters

	x : float32

The activation (the summed, weighted input of a neuron).

	Returns

	float32 in [-1, 1]

The output of the tanh function applied to the activation.

class Tanh(Activation):
 """Tanh activation function.

 The hyperbolic tangent function is an old mathematical function.
 It was first used in the work by L'Abbe Sauri (1774).
 """

 def __init__(self):
 super(Tanh, self).__init__()

 def forward(self, input):
 """This function is easily defined as the ratio between the hyperbolic
 sine and the cosine functions (or expanded, as the ratio of the
 half‐difference and half‐sum of two exponential functions in the
 points :math:`z` and :math:`-z`):

 .. math:: tanh(z) & = \\frac{sinh(z)}{cosh(z)} \\\\
 & = \\frac{e^z - e^{-z}}{e^z + e^{-z}}

 Fortunately, numpy provides :meth:`tanh` methods. So in our implementation,
 we directly use :math:`\\varphi(x) = \\tanh(x)`.

 Parameters

 x : float32
 The activation (the summed, weighted input of a neuron).

 Returns

 float32 in [-1, 1]
 The output of the tanh function applied to the activation.
 """
 self.last_forward = np.tanh(input)
 return self.last_forward

 def derivative(self, input=None):
 """The derivative of :meth:`tanh` functions is

 .. math:: \\frac{d}{dx} tanh(x) & = \\frac{d}{dx} \\frac{sinh(x)}{cosh(x)} \\\\
 & = \\frac{cosh(x) \\frac{d}{dx}sinh(x) - sinh(x) \\frac{d}{dx}cosh(x) }{ cosh^2(x)} \\\\
 & = \\frac{ cosh(x) cosh(x) - sinh(x) sinh(x) }{ cosh^2(x)} \\\\
 & = 1 - tanh^2(x)

 Returns

 float32
 The derivative of tanh function.
 """
 last_forward = self.forward(input) if input else self.last_forward
 return 1 - np.power(last_forward, 2)

	
class npdl.activations.ReLU[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/activations.py#L163-L217]

	Rectify activation function.

Two additional major benefits of ReLUs are sparsity and a reduced
likelihood of vanishing gradient. But first recall the definition
of a ReLU is \(h=max(0,a)\) where \(a=Wx+b\).

One major benefit is the reduced likelihood of the gradient to vanish.
This arises when \(a>0\). In this regime the gradient has a constant value.
In contrast, the gradient of sigmoids becomes increasingly small as the
absolute value of \(x\) increases. The constant gradient of ReLUs results in
faster learning.

The other benefit of ReLUs is sparsity. Sparsity arises when \(a≤0\).
The more such units that exist in a layer the more sparse the resulting
representation. Sigmoids on the other hand are always likely to generate
some non-zero value resulting in dense representations. Sparse representations
seem to be more beneficial than dense representations.

	
derivative(input=None)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/activations.py#L205-L217]

	The point-wise derivative for ReLU is \(\frac{dy}{dx} = 1\), if
\(x>0\), or \(\frac{dy}{dx} = 0\), if \(x<=0\).

	Returns

	float32

The derivative of ReLU function.

	
forward(input)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/activations.py#L186-L203]

	During the forward pass, it inhibits all inhibitions below some
threshold \(ϵ\), typically \(0\). In other words, it computes point-wise

\[y=max(0,x)\]

	Parameters

	x : float32

The activation (the summed, weighted input of a neuron).

	Returns

	float32

The output of the rectify function applied to the activation.

class ReLU(Activation):
 """Rectify activation function.

 Two additional major benefits of ReLUs are sparsity and a reduced
 likelihood of vanishing gradient. But first recall the definition
 of a ReLU is :math:`h=max(0,a)` where :math:`a=Wx+b`.

 One major benefit is the reduced likelihood of the gradient to vanish.
 This arises when :math:`a>0`. In this regime the gradient has a constant value.
 In contrast, the gradient of sigmoids becomes increasingly small as the
 absolute value of :math:`x` increases. The constant gradient of ReLUs results in
 faster learning.

 The other benefit of ReLUs is sparsity. Sparsity arises when :math:`a≤0`.
 The more such units that exist in a layer the more sparse the resulting
 representation. Sigmoids on the other hand are always likely to generate
 some non-zero value resulting in dense representations. Sparse representations
 seem to be more beneficial than dense representations.
 """

 def __init__(self):
 super(ReLU, self).__init__()

 def forward(self, input):
 """During the forward pass, it inhibits all inhibitions below some
 threshold :math:`ϵ`, typically :math:`0`. In other words, it computes point-wise

 .. math:: y=max(0,x)

 Parameters

 x : float32
 The activation (the summed, weighted input of a neuron).

 Returns

 float32
 The output of the rectify function applied to the activation.
 """
 self.last_forward = input
 return np.maximum(0.0, input)

 def derivative(self, input=None):
 """The point-wise derivative for ReLU is :math:`\\frac{dy}{dx} = 1`, if
 :math:`x>0`, or :math:`\\frac{dy}{dx} = 0`, if :math:`x<=0`.

 Returns

 float32
 The derivative of ReLU function.
 """
 last_forward = input if input else self.last_forward
 res = np.zeros(last_forward.shape, dtype=get_dtype())
 res[last_forward > 0] = 1.
 return res

	
class npdl.activations.Linear[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/activations.py#L224-L258]

	Linear activation function.

	
derivative(input=None)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/activations.py#L248-L258]

	Backward propagation.
The backward also return identity matrix.

	Returns

	float32

The derivative of linear function.

	
forward(input)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/activations.py#L231-L246]

	It’s also known as identity activation funtion. The
forward step is \(\varphi(x) = x\)

	Parameters

	x : float32

The activation (the summed, weighted input of a neuron).

	Returns

	float32

The output of the identity applied to the activation.

class Linear(Activation):
 """Linear activation function.
 """

 def __init__(self):
 super(Linear, self).__init__()

 def forward(self, input):
 """It's also known as identity activation funtion. The
 forward step is :math:`\\varphi(x) = x`

 Parameters

 x : float32
 The activation (the summed, weighted input of a neuron).

 Returns

 float32
 The output of the identity applied to the activation.
 """
 self.last_forward = input
 return input

 def derivative(self, input=None):
 """Backward propagation.
 The backward also return identity matrix.

 Returns

 float32
 The derivative of linear function.
 """
 last_forward = input if input else self.last_forward
 return np.ones(last_forward.shape, dtype=get_dtype())

	
class npdl.activations.Softmax[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/activations.py#L265-L304]

	Softmax activation function.

	
derivative(input=None)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/activations.py#L295-L304]

	Backward propagation.

	Returns

	float32

The derivative of Softmax function.

	
forward(input)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/activations.py#L272-L293]

	\(\varphi(\mathbf{x})_j =
\frac{e^{\mathbf{x}_j}}{\sum_{k=1}^K e^{\mathbf{x}_k}}\)
where \(K\) is the total number of neurons in the layer. This
activation function gets applied row-wise.

	Parameters

	x : float32

The activation (the summed, weighted input of a neuron).

	Returns

	float32 where the sum of the row is 1 and each single value is in [0, 1]

The output of the softmax function applied to the activation.

class Softmax(Activation):
 """Softmax activation function.
 """

 def __init__(self):
 super(Softmax, self).__init__()

 def forward(self, input):
 """:math:`\\varphi(\\mathbf{x})_j =
 \\frac{e^{\mathbf{x}_j}}{\sum_{k=1}^K e^{\mathbf{x}_k}}`
 where :math:`K` is the total number of neurons in the layer. This
 activation function gets applied row-wise.

 Parameters

 x : float32
 The activation (the summed, weighted input of a neuron).

 Returns

 float32 where the sum of the row is 1 and each single value is in [0, 1]
 The output of the softmax function applied to the activation.
 """
 assert np.ndim(input) == 2
 self.last_forward = input
 x = input - np.max(input, axis=1, keepdims=True)
 exp_x = np.exp(x)
 s = exp_x / np.sum(exp_x, axis=1, keepdims=True)
 return s

 def derivative(self, input=None):
 """Backward propagation.

 Returns

 float32
 The derivative of Softmax function.
 """
 last_forward = input if input else self.last_forward
 return np.ones(last_forward.shape, dtype=get_dtype())

	
class npdl.activations.Elliot(steepness=1)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/activations.py#L311-L354]

	A fast approximation of sigmoid.

The function was first introduced
in 1993 by D.L. Elliot under the title A Better Activation Function for
Artificial Neural Networks. The function closely approximates the
Sigmoid or Hyperbolic Tangent functions for small values, however it
takes longer to converge for large values (i.e. It doesn’t go to 1 or
0 as fast), though this isn’t particularly a problem if you’re using
it for classification.

	
derivative(input=None)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/activations.py#L345-L354]

	Backward propagation.

	Returns

	float32

The derivative of Elliot function.

	
forward(input)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/activations.py#L329-L343]

	Forward propagation.

	Parameters

	x : float32

The activation (the summed, weighted input of a neuron).

	Returns

	float32

The output of the softplus function applied to the activation.

class Elliot(Activation):
 """ A fast approximation of sigmoid.

 The function was first introduced
 in 1993 by D.L. Elliot under the title A Better Activation Function for
 Artificial Neural Networks. The function closely approximates the
 Sigmoid or Hyperbolic Tangent functions for small values, however it
 takes longer to converge for large values (i.e. It doesn't go to 1 or
 0 as fast), though this isn't particularly a problem if you're using
 it for classification.

 """

 def __init__(self, steepness=1):
 super(Elliot, self).__init__()

 self.steepness = steepness

 def forward(self, input):
 """Forward propagation.

 Parameters

 x : float32
 The activation (the summed, weighted input of a neuron).

 Returns

 float32
 The output of the softplus function applied to the activation.
 """
 self.last_forward = 1 + np.abs(input * self.steepness)
 return 0.5 * self.steepness * input / self.last_forward + 0.5

 def derivative(self, input=None):
 """Backward propagation.

 Returns

 float32
 The derivative of Elliot function.
 """
 last_forward = 1 + np.abs(input * self.steepness) if input else self.last_forward
 return 0.5 * self.steepness / np.power(last_forward, 2)

	
class npdl.activations.SymmetricElliot(steepness=1)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/activations.py#L361-L395]

	Elliot symmetric sigmoid transfer function.

	
derivative(input=None)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/activations.py#L386-L395]

	Backward propagation.

	Returns

	float32

The derivative of SymmetricElliot function.

	
forward(input)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/activations.py#L370-L384]

	Forward propagation.

	Parameters

	x : float32

The activation (the summed, weighted input of a neuron).

	Returns

	float32

The output of the softplus function applied to the activation.

class SymmetricElliot(Activation):
 """Elliot symmetric sigmoid transfer function.

 """

 def __init__(self, steepness=1):
 super(SymmetricElliot, self).__init__()
 self.steepness = steepness

 def forward(self, input):
 """Forward propagation.

 Parameters

 x : float32
 The activation (the summed, weighted input of a neuron).

 Returns

 float32
 The output of the softplus function applied to the activation.
 """
 self.last_forward = 1 + np.abs(input * self.steepness)
 return input * self.steepness / self.last_forward

 def derivative(self, input=None):
 """Backward propagation.

 Returns

 float32
 The derivative of SymmetricElliot function.
 """
 last_forward = 1 + np.abs(input * self.steepness) if input else self.last_forward
 return self.steepness / np.power(last_forward, 2)

	
class npdl.activations.SoftPlus[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/activations.py#L402-L434]

	Softplus activation function.

	
derivative(input=None)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/activations.py#L425-L434]

	Backward propagation.

	Returns

	float32

The derivative of Softplus function.

	
forward(input)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/activations.py#L409-L423]

	\(\varphi(x) = \log(1 + e^x)\)

	Parameters

	x : float32

The activation (the summed, weighted input of a neuron).

	Returns

	float32

The output of the softplus function applied to the activation.

class SoftPlus(Activation):
 """Softplus activation function.
 """

 def __init__(self):
 super(SoftPlus, self).__init__()

 def forward(self, input):
 """:math:`\\varphi(x) = \\log(1 + e^x)`

 Parameters

 x : float32
 The activation (the summed, weighted input of a neuron).

 Returns

 float32
 The output of the softplus function applied to the activation.
 """
 self.last_forward = np.exp(input)
 return np.log(1 + self.last_forward)

 def derivative(self, input=None):
 """Backward propagation.

 Returns

 float32
 The derivative of Softplus function.
 """
 last_forward = np.exp(input) if input else self.last_forward
 return last_forward / (1 + last_forward)

	
class npdl.activations.SoftSign[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/activations.py#L441-L474]

	SoftSign activation function.

	
derivative(input=None)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/activations.py#L465-L474]

	Backward propagation.

	Returns

	float32

The derivative of SoftSign function.

	
forward(input)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/activations.py#L449-L463]

	Forward propagation.

	Parameters

	x : float32

The activation (the summed, weighted input of a neuron).

	Returns

	float32

The output of the softplus function applied to the activation.

class SoftSign(Activation):
 """SoftSign activation function.

 """

 def __init__(self):
 super(SoftSign, self).__init__()

 def forward(self, input):
 """Forward propagation.

 Parameters

 x : float32
 The activation (the summed, weighted input of a neuron).

 Returns

 float32
 The output of the softplus function applied to the activation.
 """
 self.last_forward = np.abs(input) + 1
 return input / self.last_forward

 def derivative(self, input=None):
 """Backward propagation.

 Returns

 float32
 The derivative of SoftSign function.
 """
 last_forward = np.abs(input) + 1 if input else self.last_forward
 return 1. / np.power(last_forward, 2)

npdl.initializations

Initializers

	Zero

	

	One

	

	Uniform

	

	Normal

	

	Orthogonal

	

Detailed Description

npdl.objectives

Provides some minimal help with building loss expressions for training or
validating a neural network.

These functions build element- or item-wise loss expressions from network
predictions and targets.

Examples

Assuming you have a simple neural network for 3-way classification:

>>> import npdl
>>> model = npdl.model.Model()
>>> model.add(npdl.layers.Dense(n_out=100, n_in=50))
>>> model.add(npdl.layers.Dense(n_out=3, activation=npdl.activations.Softmax()))
>>> model.compile(loss=npdl.objectives.SCCE(), optimizer=npdl.optimizers.SGD(lr=0.005))

Objectives

	MeanSquaredError

	Computes the element-wise squared difference between targets and outputs.

	MSE

	alias of MeanSquaredError

	HellingerDistance

	Computes the multi-class hinge loss between predictions and targets.

	HeD

	alias of HellingerDistance

	BinaryCrossEntropy

	Computes the binary cross-entropy between predictions and targets.

	BCE

	alias of BinaryCrossEntropy

	SoftmaxCategoricalCrossEntropy

	Computes the categorical cross-entropy between predictions and targets.

	SCCE

	alias of SoftmaxCategoricalCrossEntropy

Detailed Description

	
class npdl.objectives.Objective[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/objectives.py#L26-L52]

	An objective function (or loss function, or optimization score
function) is one of the two parameters required to compile a model.

	
backward(outputs, targets)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/objectives.py#L36-L49]

	Backward function.

	Parameters

	outputs, targets : numpy.array

The arrays to compute the derivatives of them.

	Returns

	numpy.array

An array of derivative.

	
forward(outputs, targets)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/objectives.py#L31-L34]

	Forward function.

	
class npdl.objectives.MeanSquaredError[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/objectives.py#L55-L122]

	Computes the element-wise squared difference between targets and outputs.

In statistics, the mean squared error (MSE) or mean squared deviation (MSD) of an
estimator (of a procedure for estimating an unobserved quantity) measures the
average of the squares of the errors or deviations—that is, the difference between
the estimator and what is estimated. MSE is a risk function, corresponding to the
expected value of the squared error loss or quadratic loss. The difference occurs
because of randomness or because the estimator doesn’t account for information that
could produce a more accurate estimate. [R24]

The MSE is a measure of the quality of an estimator—it is always non-negative,
and values closer to zero are better.

The MSE is the second moment (about the origin) of the error, and thus incorporates
both the variance of the estimator and its bias. For an unbiased estimator, the MSE
is the variance of the estimator. Like the variance, MSE has the same units of
measurement as the square of the quantity being estimated. In an analogy to standard
deviation, taking the square root of MSE yields the root-mean-square error or
root-mean-square deviation (RMSE or RMSD), which has the same units as the quantity
being estimated; for an unbiased estimator, the RMSE is the square root of the
variance, known as the standard deviation.

Notes

This is the loss function of choice for many regression problems
or auto-encoders with linear output units.

References

	R24(1,2)

	Lehmann, E. L.; Casella, George (1998). Theory of Point Estimation (2nd ed.).
New York: Springer. ISBN 0-387-98502-6. MR 1639875.

	
backward(outputs, targets)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/objectives.py#L107-L122]

	MeanSquaredError backward propagation.

\[dE = p - t\]

	Parameters

	outputs, targets : numpy.array

The arrays to compute the derivative between them.

	Returns

	numpy.array

Derivative.

	
forward(outputs, targets)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/objectives.py#L90-L105]

	MeanSquaredError forward propagation.

\[L = (p - t)^2\]

	Parameters

	outputs, targets : numpy.array

The arrays to compute the squared difference between.

	Returns

	numpy.array

An expression for the element-wise squared difference.

	
npdl.objectives.MSE[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/objectives.py#L55-L122]

	alias of MeanSquaredError

	
class npdl.objectives.HellingerDistance[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/objectives.py#L128-L179]

	Computes the multi-class hinge loss between predictions and targets.

In probability and statistics, the Hellinger distance (closely related to,
although different from, the Bhattacharyya distance) is used to quantify
the similarity between two probability distributions. It is a type of
f-divergence. The Hellinger distance is defined in terms of the Hellinger
integral, which was introduced by Ernst Hellinger in 1909.[R25]_ [R26]

Notes

This is an alternative to the categorical cross-entropy loss for
multi-class classification problems

References

	R25

	Nikulin, M.S. (2001), “Hellinger distance”, in Hazewinkel, Michiel,
Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4

	R26(1,2)

	Jump up ^ Hellinger, Ernst (1909), “Neue Begründung der Theorie
quadratischer Formen von unendlichvielen Veränderlichen”, Journal
für die reine und angewandte Mathematik (in German), 136: 210–271,
doi:10.1515/crll.1909.136.210, JFM 40.0393.01

	
backward(outputs, targets)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/objectives.py#L175-L179]

	HellingerDistance forward propagation.

	
forward(outputs, targets)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/objectives.py#L154-L173]

	HellingerDistance forward propagation.

	Parameters

	outputs : numpy 2D array

outputs in (0, 1), such as softmax output of a neural network,
with data points in rows and class probabilities in columns.

targets : numpy 2D array

Either a vector of int giving the correct class index per data point
or a 2D tensor of one-hot encoding of the correct class in the same
layout as predictions (non-binary targets in [0, 1] do not work!)

	Returns

	numpy 1D array

An expression for the Hellinger Distance

	
npdl.objectives.HeD[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/objectives.py#L128-L179]

	alias of HellingerDistance

	
class npdl.objectives.BinaryCrossEntropy(epsilon=1e-11)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/objectives.py#L185-L231]

	Computes the binary cross-entropy between predictions and targets.

	Returns

	numpy array

An expression for the element-wise binary cross-entropy.

Notes

This is the loss function of choice for binary classification problems
and sigmoid output units.

	
backward(outputs, targets)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/objectives.py#L218-L231]

	Backward pass.

	Parameters

	outputs : numpy.array

Predictions in (0, 1), such as sigmoidal output of a neural network.

targets : numpy.array

Targets in [0, 1], such as ground truth labels.

	
forward(outputs, targets)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/objectives.py#L202-L216]

	Forward pass.

\[L = -t \log(p) - (1 - t) \log(1 - p)\]

	Parameters

	outputs : numpy.array

Predictions in (0, 1), such as sigmoidal output of a neural network.

targets : numpy.array

Targets in [0, 1], such as ground truth labels.

	
npdl.objectives.BCE[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/objectives.py#L185-L231]

	alias of BinaryCrossEntropy

	
class npdl.objectives.SoftmaxCategoricalCrossEntropy(epsilon=1e-11)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/objectives.py#L237-L293]

	Computes the categorical cross-entropy between predictions and targets.

Notes

This is the loss function of choice for multi-class classification
problems and softmax output units. For hard targets, i.e., targets
that assign all of the probability to a single class per data point,
providing a vector of int for the targets is usually slightly more
efficient than providing a matrix with a single 1.0 per row.

	
backward(outputs, targets)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/objectives.py#L274-L293]

	SoftmaxCategoricalCrossEntropy backward propagation.

\[dE = p - t\]

	Parameters

	outputs : numpy 2D array

Predictions in (0, 1), such as softmax output of a neural network,
with data points in rows and class probabilities in columns.

targets : numpy 2D array

Either targets in [0, 1] matching the layout of outputs, or
a vector of int giving the correct class index per data point.

	Returns

	numpy 1D array

	
forward(outputs, targets)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/objectives.py#L252-L272]

	SoftmaxCategoricalCrossEntropy forward propagation.

\[L_i = - \sum_j{t_{i,j} \log(p_{i,j})}\]

	Parameters

	outputs : numpy.array

Predictions in (0, 1), such as softmax output of a neural network,
with data points in rows and class probabilities in columns.

targets : numpy.array

Either targets in [0, 1] matching the layout of outputs, or
a vector of int giving the correct class index per data point.

	Returns

	numpy 1D array

An expression for the item-wise categorical cross-entropy.

	
npdl.objectives.SCCE[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/objectives.py#L237-L293]

	alias of SoftmaxCategoricalCrossEntropy

npdl.optimizers

Functions to generate Theano update dictionaries for training.

The update functions implement different methods to control the learning
rate for use with stochastic gradient descent.

Update functions take a loss expression or a list of gradient expressions and
a list of parameters as input and return an ordered dictionary of updates:

Examples

Using SGD to define an update dictionary for a toy
example network:

>>> import npdl
>>> from npdl.activations import ReLU
>>> from npdl.activations import Softmax
>>> from npdl.objectives import SCCE
>>> model = npdl.model.Model()
>>> model.add(npdl.layers.Dense(n_out=100, n_in=50, activation=ReLU()))
>>> model.add(npdl.layers.Dense(n_out=200, activation=ReLU()))
>>> model.add(npdl.layers.Dense(n_out=100, activation=ReLU()))
>>> model.add(npdl.layers.Dense(n_out=10, activation=Softmax()))
>>> model.compile(loss=SCCE(), optimizer=npdl.optimizers.SGD(lr=0.005))

Optimizers

	SGD

	Stochastic Gradient Descent (SGD) updates

	Momentum

	Stochastic Gradient Descent (SGD) updates with momentum

	NesterovMomentum

	Stochastic Gradient Descent (SGD) updates with Nesterov momentum

	Adagrad

	Adagrad updates

	RMSprop

	RMSProp updates

	Adadelta

	Adadelta updates

	Adam

	Adam updates

	Adamax

	Adamax updates

Detailed Description

	
class npdl.optimizers.SGD(*args, **kwargs)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/optimizers.py#L84-L99]

	Stochastic Gradient Descent (SGD) updates

Generates update expressions of the form:

	param := param - learning_rate * gradient

	
class npdl.optimizers.Momentum(momentum=0.9, *args, **kwargs)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/optimizers.py#L102-L141]

	Stochastic Gradient Descent (SGD) updates with momentum

Generates update expressions of the form:

	velocity := momentum * velocity - learning_rate * gradient

	param := param + velocity

	Parameters

	momentum : float

The amount of momentum to apply. Higher momentum results in
smoothing over more update steps. Defaults to 0.9.

Notes

Higher momentum also results in larger update steps. To counter that,
you can optionally scale your learning rate by 1 - momentum.

	
class npdl.optimizers.NesterovMomentum(momentum=0.9, *args, **kwargs)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/optimizers.py#L144-L189]

	Stochastic Gradient Descent (SGD) updates with Nesterov momentum

Generates update expressions of the form:

	velocity := momentum * velocity - learning_rate * gradient

	param := param + momentum * velocity - learning_rate * gradient

	Parameters

	momentum : float

The amount of momentum to apply. Higher momentum results in
smoothing over more update steps. Defaults to 0.9.

Notes

Higher momentum also results in larger update steps. To counter that,
you can optionally scale your learning rate by 1 - momentum.

The classic formulation of Nesterov momentum (or Nesterov accelerated
gradient) requires the gradient to be evaluated at the predicted next
position in parameter space. Here, we use the formulation described at
https://github.com/lisa-lab/pylearn2/pull/136#issuecomment-10381617,
which allows the gradient to be evaluated at the current parameters.

	
class npdl.optimizers.Adagrad(epsilon=1e-06, *args, **kwargs)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/optimizers.py#L192-L243]

	Adagrad updates

Scale learning rates by dividing with the square root of accumulated
squared gradients. See [R33] for further description.

	Parameters

	epsilon : float

Small value added for numerical stability.

Notes

Using step size eta Adagrad calculates the learning rate for feature i at
time step t as:

\[\eta_{t,i} = \frac{\eta}
{\sqrt{\sum^t_{t^\prime} g^2_{t^\prime,i}+\epsilon}} g_{t,i}\]

as such the learning rate is monotonically decreasing.

Epsilon is not included in the typical formula, see [R34].

References

	R33(1,2)

	Duchi, J., Hazan, E., & Singer, Y. (2011):
Adaptive subgradient methods for online learning and stochastic
optimization. JMLR, 12:2121-2159.

	R34(1,2)

	Chris Dyer:
Notes on AdaGrad. http://www.ark.cs.cmu.edu/cdyer/adagrad.pdf

	
class npdl.optimizers.RMSprop(rho=0.9, epsilon=1e-06, *args, **kwargs)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/optimizers.py#L246-L297]

	RMSProp updates

Scale learning rates by dividing with the moving average of the root mean
squared (RMS) gradients. See [R35] for further description.

	Parameters

	rho : float

Gradient moving average decay factor.

epsilon : float

Small value added for numerical stability.

Notes

rho should be between 0 and 1. A value of rho close to 1 will decay the
moving average slowly and a value close to 0 will decay the moving average
fast.

Using the step size \(\eta\) and a decay factor \(\rho\) the
learning rate \(\eta_t\) is calculated as:

\[\begin{split}r_t &= \rho r_{t-1} + (1-\rho)*g^2\\
\eta_t &= \frac{\eta}{\sqrt{r_t + \epsilon}}\end{split}\]

References

	R35(1,2)

	Tieleman, T. and Hinton, G. (2012):
Neural Networks for Machine Learning, Lecture 6.5 - rmsprop.
Coursera. http://www.youtube.com/watch?v=O3sxAc4hxZU (formula @5:20)

	
class npdl.optimizers.Adadelta(rho=0.9, epsilon=1e-06, *args, **kwargs)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/optimizers.py#L300-L369]

	Adadelta updates

Scale learning rates by the ratio of accumulated gradients to accumulated
updates, see [R36] and notes for further description.

	Parameters

	rho : float

Gradient moving average decay factor.

epsilon : float

Small value added for numerical stability.

decay : float

Decay parameter for the moving average.

Notes

rho should be between 0 and 1. A value of rho close to 1 will decay the
moving average slowly and a value close to 0 will decay the moving average
fast.

rho = 0.95 and epsilon=1e-6 are suggested in the paper and reported to
work for multiple datasets (MNIST, speech).

In the paper, no learning rate is considered (so learning_rate=1.0).
Probably best to keep it at this value.
epsilon is important for the very first update (so the numerator does
not become 0).

Using the step size eta and a decay factor rho the learning rate is
calculated as:

\[\begin{split}r_t &= \rho r_{t-1} + (1-\rho)*g^2\\
\eta_t &= \eta \frac{\sqrt{s_{t-1} + \epsilon}}
 {\sqrt{r_t + \epsilon}}\\
s_t &= \rho s_{t-1} + (1-\rho)*(\eta_t*g)^2\end{split}\]

References

	R36(1,2)

	Zeiler, M. D. (2012):
ADADELTA: An Adaptive Learning Rate Method.
arXiv Preprint arXiv:1212.5701.

	
class npdl.optimizers.Adam(beta1=0.9, beta2=0.999, epsilon=1e-08, *args, **kwargs)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/optimizers.py#L372-L426]

	Adam updates

Adam updates implemented as in [R37].

	Parameters

	beta1 : float

Exponential decay rate for the first moment estimates.

beta2 : float

Exponential decay rate for the second moment estimates.

epsilon : float

Constant for numerical stability.

Notes

The paper [R37] includes an additional hyperparameter lambda. This is only
needed to prove convergence of the algorithm and has no practical use
(personal communication with the authors), it is therefore omitted here.

References

	R37(1,2,3)

	Kingma, Diederik, and Jimmy Ba (2014):
Adam: A Method for Stochastic Optimization.
arXiv preprint arXiv:1412.6980.

	
class npdl.optimizers.Adamax(beta1=0.9, beta2=0.999, epsilon=1e-08, *args, **kwargs)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/optimizers.py#L429-L477]

	Adamax updates

Adamax updates implemented as in [R38]. This is a variant of of the Adam
algorithm based on the infinity norm.

	Parameters

	beta1 : float

Exponential decay rate for the first moment estimates.

beta2 : float

Exponential decay rate for the second moment estimates.

epsilon : float

Constant for numerical stability.

References

	R38(1,2)

	Kingma, Diederik, and Jimmy Ba (2014):
Adam: A Method for Stochastic Optimization.
arXiv preprint arXiv:1412.6980.

npdl.model

Linear stack of layers.

Detailed Description

	
class npdl.model.Model(layers=None)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/model.py#L21-L161]

	
	
predict(X)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/model.py#L140-L146]

	Calculate an output Y for the given input X.

npdl.utils

	Data Utils

	Random Utils

Data Utils

	one_hot

	One-hot encoding is often used for indicating the state of a state machine.

	unhot

	Get argmax indexes.

Random Utils

	get_rng

	Get the package-level random number generator.

	set_rng

	Set the package-level random number generator.

	set_seed

	Set numpy seed.

	get_dtype

	Get data dtype numpy.dtype.

	set_dtype

	Set numpy dtype.

Data Utils

	
npdl.utils.one_hot(labels, nb_classes=None)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/utils/data.py#L7-L58]

	One-hot encoding is often used for indicating the
state of a state machine. When using binary or Gray code,
a decoder is needed to determine the state. A one-hot state
machine, however, does not need a decoder as the state
machine is in the nth state if and only if the nth bit is
high.

A ring counter with 15 sequentially-ordered states is an
example of a state machine. A one-hot implementation would
have 15 flip flops chained in series with the Q output of
each flip flop connected to the D input of the next and the
D input of the first flip flop connected to the Q output of
the 15th flip flop. The first flip flop in the chain represents
the first state, the second represents the second state, and
so on to the 15th flip flop which represents the last state.
Upon reset of the state machine all of the flip flops are reset
to 0 except the first in the chain which is set to 1.
The next clock edge arriving at the flip flops advances the
one hot bit to the second flip flop. The hot bit
advances in this way until the 15th state, after which the
state machine returns to the first state.

An address decoder converts from binary or gray code to
one-hot representation. A priority encoder converts from
one-hot representation to binary or gray code.

In natural language processing, a one-hot vector is a \(1 × N\)
matrix (vector) used to distinguish each word in a vocabulary
from every other word in the vocabulary. The vector consists
of 0s in all cells with the exception of a single 1 in a cell
used uniquely to identify the word.

	Parameters

	labels ： iterable

nb_classes : (iterable, optional)

	Returns

	numpy.array

Returns a one-hot numpy array.

	
npdl.utils.unhot(one_hot_labels)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/utils/data.py#L61-L73]

	Get argmax indexes.

	Parameters

	one_hot_labels : numpy.array

	Returns

	numpy.array

Returns a unhot numpy array.

Random Utils

	
npdl.utils.get_rng()[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/utils/random.py#L10-L20]

	Get the package-level random number generator.

	Returns

	numpy.random.RandomState instance

The numpy.random.RandomState instance passed to the most
recent call of set_rng(), or numpy.random if set_rng()
has never been called.

	
npdl.utils.set_rng(rng)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/utils/random.py#L23-L32]

	Set the package-level random number generator.

	Parameters

	new_rng : numpy.random or a numpy.random.RandomState instance

The random number generator to use.

	
npdl.utils.set_seed(seed)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/utils/random.py#L35-L43]

	Set numpy seed.

	Parameters

	seed : int

	
npdl.utils.get_dtype()[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/utils/random.py#L46-L53]

	Get data dtype numpy.dtype.

	Returns

	str or numpy.dtype

	
npdl.utils.set_dtype(dtype)[source] [https://github.com/oujago/NumpyDL/blob/v0.4.0/npdl/utils/random.py#L56-L64]

	Set numpy dtype.

	Parameters

	dtype : str or numpy.dtype

 Python Module Index

 n

 		 	

 		
 n	

 	[image: -]
 	
 npdl	

 	
 	
 npdl.activations	

 	
 	
 npdl.layers	

 	
 	
 npdl.layers.base	

 	
 	
 npdl.layers.convolution	

 	
 	
 npdl.layers.core	

 	
 	
 npdl.layers.embedding	

 	
 	
 npdl.layers.normalization	

 	
 	
 npdl.layers.pooling	

 	
 	
 npdl.layers.recurrent	

 	
 	
 npdl.layers.shape	

 	
 	
 npdl.model	

 	
 	
 npdl.objectives	

 	
 	
 npdl.optimizers	

 	
 	
 npdl.utils	

 	
 	
 npdl.utils.data	

 	
 	
 npdl.utils.random	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U

A

 	
 	Activation (class in npdl.activations)

 	Adadelta (class in npdl.optimizers)

 	
 	Adagrad (class in npdl.optimizers)

 	Adam (class in npdl.optimizers)

 	Adamax (class in npdl.optimizers)

B

 	
 	backward() (npdl.layers.BatchLSTM method)

 	(npdl.layers.Dense method)

 	(npdl.layers.Layer method)

 	(npdl.layers.Linear method)

 	(npdl.objectives.BinaryCrossEntropy method)

 	(npdl.objectives.HellingerDistance method)

 	(npdl.objectives.MeanSquaredError method)

 	(npdl.objectives.Objective method)

 	(npdl.objectives.SoftmaxCategoricalCrossEntropy method)

 	
 	BatchLSTM (class in npdl.layers)

 	BatchNormal (class in npdl.layers)

 	BCE (in module npdl.objectives)

 	BinaryCrossEntropy (class in npdl.objectives)

C

 	
 	connect_to() (npdl.layers.BatchLSTM method)

 	(npdl.layers.Layer method)

 	
 	Convolution (class in npdl.layers)

D

 	
 	Dense (class in npdl.layers)

 	derivative() (npdl.activations.Activation method)

 	(npdl.activations.Elliot method)

 	(npdl.activations.Linear method)

 	(npdl.activations.ReLU method)

 	(npdl.activations.Sigmoid method)

 	(npdl.activations.SoftPlus method)

 	(npdl.activations.SoftSign method)

 	(npdl.activations.Softmax method)

 	(npdl.activations.SymmetricElliot method)

 	(npdl.activations.Tanh method)

 	
 	Dropout (class in npdl.layers)

E

 	
 	Elliot (class in npdl.activations)

 	
 	Embedding (class in npdl.layers)

F

 	
 	Flatten (class in npdl.layers)

 	forward() (npdl.activations.Activation method)

 	(npdl.activations.Elliot method)

 	(npdl.activations.Linear method)

 	(npdl.activations.ReLU method)

 	(npdl.activations.Sigmoid method)

 	(npdl.activations.SoftPlus method)

 	(npdl.activations.SoftSign method)

 	(npdl.activations.Softmax method)

 	(npdl.activations.SymmetricElliot method)

 	(npdl.activations.Tanh method)

 	(npdl.layers.BatchLSTM method)

 	(npdl.layers.Dense method)

 	(npdl.layers.Dropout method)

 	(npdl.layers.Layer method)

 	(npdl.layers.Linear method)

 	(npdl.objectives.BinaryCrossEntropy method)

 	(npdl.objectives.HellingerDistance method)

 	(npdl.objectives.MeanSquaredError method)

 	(npdl.objectives.Objective method)

 	(npdl.objectives.SoftmaxCategoricalCrossEntropy method)

 	
 	from_json() (npdl.layers.Layer class method)

G

 	
 	get_dtype() (in module npdl.utils)

 	get_rng() (in module npdl.utils)

 	
 	grads (npdl.layers.Layer attribute)

 	GRU (class in npdl.layers)

H

 	
 	HeD (in module npdl.objectives)

 	
 	HellingerDistance (class in npdl.objectives)

L

 	
 	Layer (class in npdl.layers)

 	Linear (class in npdl.activations)

 	(class in npdl.layers)

 	
 	LSTM (class in npdl.layers)

M

 	
 	MaxPooling (class in npdl.layers)

 	MeanPooling (class in npdl.layers)

 	MeanSquaredError (class in npdl.objectives)

 	
 	Model (class in npdl.model)

 	Momentum (class in npdl.optimizers)

 	MSE (in module npdl.objectives)

N

 	
 	NesterovMomentum (class in npdl.optimizers)

 	npdl.activations (module)

 	npdl.layers (module)

 	npdl.layers.base (module)

 	npdl.layers.convolution (module)

 	npdl.layers.core (module)

 	npdl.layers.embedding (module)

 	npdl.layers.normalization (module)

 	
 	npdl.layers.pooling (module)

 	npdl.layers.recurrent (module)

 	npdl.layers.shape (module)

 	npdl.model (module)

 	npdl.objectives (module)

 	npdl.optimizers (module)

 	npdl.utils (module)

 	npdl.utils.data (module)

 	npdl.utils.random (module)

O

 	
 	Objective (class in npdl.objectives)

 	
 	one_hot() (in module npdl.utils)

P

 	
 	param_grads (npdl.layers.Layer attribute)

 	
 	params (npdl.layers.Layer attribute)

 	predict() (npdl.model.Model method)

R

 	
 	Recurrent (class in npdl.layers)

 	
 	ReLU (class in npdl.activations)

 	RMSprop (class in npdl.optimizers)

S

 	
 	SCCE (in module npdl.objectives)

 	set_dtype() (in module npdl.utils)

 	set_rng() (in module npdl.utils)

 	set_seed() (in module npdl.utils)

 	SGD (class in npdl.optimizers)

 	Sigmoid (class in npdl.activations)

 	
 	SimpleRNN (class in npdl.layers)

 	Softmax (class in npdl.activations)

 	(class in npdl.layers)

 	SoftmaxCategoricalCrossEntropy (class in npdl.objectives)

 	SoftPlus (class in npdl.activations)

 	SoftSign (class in npdl.activations)

 	SymmetricElliot (class in npdl.activations)

T

 	
 	Tanh (class in npdl.activations)

 	
 	to_json() (npdl.layers.Layer method)

U

 	
 	unhot() (in module npdl.utils)

 _images/cnn_11.png

_images/cnn_12.png

_images/cnn_1.png
* 2 % x5
WS W 6“Z+w“3, 63

_images/cnn_10.png

_static/comment-bright.png

_images/cnn_2.png
connections cutting weights sharing

—>

_static/comment-close.png

_images/cnn_3.png

_static/ajax-loader.gif

_images/cnn_13.png

_images/cnn_14.png

_static/down.png

_static/comment.png

_images/cnn_4.png
12

£

_static/down-pressed.png

_images/cnn_5.png
wll

rot_180(w) grads from orange
layer

_static/file.png

_images/cnn_9.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Hi, NumpyDL

 		
 Installation

 		
 Prerequisites

 		
 Python + pip

 		
 C compiler

 		
 numpy/scipy + BLAS

 		
 Stable NumpyDL release

 		
 Development installation

 		
 install from source

 		
 contribute

 		
 Development

 		
 Philosophy

 		
 What to contribute

 		
 Give feedback

 		
 Fix bugs

 		
 Implement features

 		
 Write documentation

 		
 Write tutorial

 		
 How to contribute

 		
 Edit on GitHub

 		
 Development setup

 		
 Documentation

 		
 Testing

 		
 Sending Pull Requests

 		
 Activation

 		
 What is activation function?

 		
 Why need activation function?

 		
 Commonly used activation functions

 		
 Sigmoid

 		
 Tangent

 		
 ReLU

 		
 Leaky ReLU

 		
 Maxout

 		
 What activation should I use?

 		
 Initialization

 		
 Introduction

 		
 Xavier Initialization

 		
 Why’s Xavier initialization important?

 		
 What’s Xavier initialization?

 		
 Where did those formulas come from?

 		
 Objective

 		
 What is the Objective Function?

 		
 Visualizing the Objective function

 		
 Optimizer

 		
 Gradient descent variants

 		
 Batch gradient descent

 		
 Stochastic gradient descent

 		
 Mini-batch gradient descent

 		
 Challenges

 		
 Gradient descent optimization algorithms

 		
 Momentum

 		
 Nesterov accelerated gradient

 		
 Adagrad

 		
 Adadelta

 		
 RMSprop

 		
 Adam

 		
 Visualization of algorithms

 		
 Which optimizer to choose?

 		
 Parallelizing and distributing SGD

 		
 Hogwild!

 		
 Downpour SGD

 		
 Delay-tolerant Algorithms for SGD

 		
 TensorFlow

 		
 Elastic Averaging SGD

 		
 Additional strategies for optimizing SGD

 		
 Shuffling and Curriculum Learning

 		
 Batch normalization

 		
 Early Stopping

 		
 Gradient noise

 		
 Conclusion

 		
 Multilayer Perceptron

 		
 Sigmoid function

 		
 Back Propagation

 		
 Example

 		
 Step 1: Forward Propagation

 		
 Step 2: Back Propagation

 		
 Code

 		
 Convolution Neural Networks

 		
 Introduction

 		
 Back Propagation

 		
 Visualizing Features

 		
 Code

 		
 Recurrent Neural Networks

 		
 What is a Recurrent Neural Net?

 		
 Simulating a Recurrent Neural Network

 		
 Training a RNN - Backpropagation Through Time

 		
 The Problems with Deep Backpropagation

 		
 Long Short Term Memory

 		
 Conclusions

 		
 npdl.layers

 		
 Base Layers

 		
 Core Layers

 		
 Convolution Layers

 		
 Embedding Layer

 		
 Normalization Layer

 		
 Pooling Layers

 		
 Recurrent Layers

 		
 Shape Layers

 		
 npdl.activations

 		
 Activations

 		
 Detailed Description

 		
 npdl.initializations

 		
 Initializers

 		
 Detailed Description

 		
 npdl.objectives

 		
 Examples

 		
 Objectives

 		
 Detailed Description

 		
 npdl.optimizers

 		
 Examples

 		
 Optimizers

 		
 Detailed Description

 		
 npdl.model

 		
 Detailed Description

 		
 npdl.utils

 		
 Data Utils

 		
 Random Utils

_images/cnn_7.png
Layer Above
Reconstruction Pooled Maps
Switches 7N
Max Pool
Max Unpooling @ O—|_| ing
Unpooled Maps Rectified Feature Maps
Rectified Linear Rectified Linear
Function </ Function
Rectified Unpooled Maps Feature Maps.
Convolutional Convolutional
Filtering {F" Filtering {F]
gl & g {F}
Reconstruction Layer Below Pooled Maps

Pooled Maps
13 Pooling
Max Locations
“Switches”
Unpooled Rectified

Maps Feature Maps ’

_images/cnn_8.png

_static/up-pressed.png

_images/init_3.jpg

_static/up.png

_images/init_4.png

_static/plus.png

_images/init_1.png

_images/init_2.jpg

_images/mlp_1.jpg
L+

_images/cnn_6.png

_images/optimizer_1.png
500

1000

1500

2000

2500

3000

3500

_images/optimizer_2.gif

_images/mlp_4.png
dnet,, * dout,, * i)l‘.v,,,,,,g o IE} a1

output dws dnet) dout ;) durs
h1
w5
output w6
h‘g E o = Yo(target o4 - out 4)?

Eota =Eot +*E o2

_images/mlp_5.png
9Eiotal __ OEiotar OJoutyy Onetpy
(77 Jout dnetpy duny
9Eotal JEq JEq
Joutpy — doutyy Jout

b1

b2

_images/optimizer_6.gif
%
5%
4%
ol
LXK

Jsd

R
KT,
5 "'o"'c"'"

545

L

G
iy
oy

SGD
Momentum
NAG
Adagrad
Adadelta
Rmsprop
%

_images/optimizier_4.png

_images/optimizer_3.gif

_images/optimizer_5.gif

_images/mlp_2.png

_images/mlp_3.png
b1.35 b2 .60

_images/rnn_5.png

_images/rnn_6.png
Keep
Gate

Read
Gate

_images/rnn_3.png
Observe W
-

_images/rnn_4.png

_images/act_1.png
Z10

_images/act_2.png
10

05

10

_images/rnn_7.png
D

4.2 4.2

Keep Keep
0 0
Memory Memory Memory

4.2
Read Read Read
0 0 1
4.2 4.2

d

0

_images/act_0.png
weights

inputs
X
activation
functon
X @ net input
net;
)) — P =0
X3 @ activation
transfer
: H function

0.
X, J
" @ threshold

_images/act_5.png
2,

!
S

S

I
Y

Randomized Leaky ReLU

Leaky ReLU/PReLU

_images/act_3.png
Ty

10

0

_images/act_4.png
075

J

7
-

ape1 sou bu

025

e1).

40

3

30

25

20

15

0

Epochs

_images/rnn_1.png
10

08

06

04

02

00,
0

2000

4000

Vi

6000

10

08

06

04

02

00,

10

08
06
04
02
8000 10000 %% 2000
0 2000 4000 6000 8000

10000

3000

6000

8000

10000

_images/rnn_2.png
Vi

10

08

06

04

02

00,
0

2000

4000

8000

10000

_images/rnn_0.png

