numpydl Documentation
Release 0.4.0

NumpyDL

Jul 11, 2017

Contents

1 API References 3
L1 npdl.layersS . .. v vt e e e e e e e e e e e 3
1.2 npdl.activations @ i i i it e e e e e e e e 12
1.3 npdl.initializations v i i i i it e e e e e e e e 23
1.4 npdl.obJectives i i i i e e e e e 24
1.5 npdl.optimizers o i i i i e e e e e e e e 28
1.6 npdl.model i i e e e e e e 32
1.7 npdl.utilso e e e e e e 32
2 Indices and tables 35
Bibliography 37
Python Module Index 39

numpydl Documentation, Release 0.4.0

NumpyDL is a simple deep learning library based on pure Python/Numpy. NumpyDL is a work in progress, input is
welcome. The project is on GitHub.

The main features of NumpyDL are as follows:
1. Pure in Numpy
. Native to Python
. Automatic differentiations are basically supported
. Commonly used models are provided: MLP, RNNs, LSTMs and CNNs
. API like Keras library

. Examples for several Al tasks

N O e AW

. Application for a toy chatbot

Contents 1

https://github.com/oujago/NumpyDL

numpydl Documentation, Release 0.4.0

2 Contents

CHAPTER 1

APl References

If you are looking for information on a specific function, class or method, this part of the documentation is for you.

1.1 npdl.layers

1.1.1 Base Layers

class npdl.layers.Layer
The Layer class represents a single layer of a neural network. It should be subclassed when implementing new
types of layers.

Because each layer can keep track of the layer(s) feeding into it, a network’s output Layer instance can double
as a handle to the full network.

backward (pre_grad, *args, **kwargs)
calculate the input gradient

connect_to (prev_layer)
Propagates the given input through this layer (and only this layer).

Parameters prev_layer : previous layer
The previous layer to propagate through this layer.

forward (input, *args, **kwargs)
Calculate layer output for given input (forward propagation).

classmethod from_ json (config)
From configuration

grads
Get layer parameter gradients as calculated from backward().

param_grads
Layer parameters and corresponding gradients.

numpydl Documentation, Release 0.4.0

params
Layer parameters.

Returns a list of numpy.array variables or expressions that parameterize the layer.
Returns list of numpy.array variables or expressions

A list of variables that parameterize the layer

Notes

For layers without any parameters, this will return an empty list.

to_json ()
To configuration

1.1.2 Core Layers
class npdl.layers.Linear (n_out, n_in=None, init="glorot_uniform’)
A fully connected layer implemented as the dot product of inputs and weights.
Parameters n_out : (int, tuple)
Desired size or shape of layer output
n_in : (int, tuple) or None
The layer input size feeding into this layer
init : (Initializer, optional)
Initializer object to use for initializing layer weights

backward (pre_grad, *args, **kwargs)
Apply the backward pass transformation to the input data.

Parameters pre_grad : numpy.array

deltas back propagated from the adjacent higher layer
Returns numpy.array

deltas to propagate to the adjacent lower layer

forward (input, *args, **kwargs)
Apply the forward pass transformation to the input data.

Parameters input : numpy.array
input data

Returns numpy.array
output data

class npdl.layers.Dense (n_out, n_in=None, init="glorot_uniform’, activation="tanh’)
A fully connected layer implemented as the dot product of inputs and weights. Generally used to implemenent
nonlinearities for layer post activations.

Parameters n_out : int
Desired size or shape of layer output

n_in : int, or None

4 Chapter 1. API References

numpydl Documentation, Release 0.4.0

The layer input size feeding into this layer
activation : str, or npdl.activatns.Activation

Defaults to Tanh
init : str, or npdl.initializations.Initializer

Initializer object to use for initializing layer weights

backward (pre_grad, *args, **kwargs)
Apply the backward pass transformation to the input data.

Parameters pre_grad : numpy.array

deltas back propagated from the adjacent higher layer
Returns numpy.array

deltas to propagate to the adjacent lower layer

forward (input, *args, **kwargs)
Apply the forward pass transformation to the input data.

Parameters input : numpy.array
input data

Returns numpy.array
output data

class npdl.layers.Softmax (n_out, n_in=None, init="glorot_uniform’)
A fully connected layer implemented as the dot product of inputs and weights.

Parameters n_out : int
Desired size or shape of layer output
n_in : int, or None
The layer input size feeding into this layer
init : str, or npdl.initializations.Initializer
Initializer object to use for initializing layer weights

class npdl.layers.Dropout (p=0.0)
A dropout layer.

Applies an element-wise multiplication of inputs with a keep mask.
A keep mask is a tensor of ones and zeros of the same shape as the input.

Each forward () call generates an new keep mask stochastically where there distribution of ones in the mask
is controlled by the keep param.

Parameters p : float
fraction of the inputs that should be stochastically kept.

forward (input, train=True, *args, **kwargs)
Apply the forward pass transformation to the input data.

Parameters input : numpy.array
input data

train : bool

1.1. npdl.layers 5

numpydl Documentation, Release 0.4.0

is inference only
Returns numpy.array

output data

1.1.3 Convolution Layers

class npdl.layers.Convolution (nb_filter, filter_size, input_shape=None, stride=1,
init="glorot_uniform’, activation="relu’)
Convolution operator for filtering windows of two-dimensional inputs.

When using this layer as the first layer in a model, provide the keyword argument input_shape (tuple of integers,
does not include the sample axis), e.g. input_shape=(3, 128, 128) for 128x128 RGB pictures.

1.1.4 Embedding Layer

class npdl.layers.Embedding (embed_words=None, static=None, input_size=None, n_out=None,
nb_batch=None, nb_seq=None, init="uniform’)

1.1.5 Normalization Layer

class npdl.layers.BatchNormal (epsilon=1e-06, momentum=0.9, axis=0, beta_init="zero’,
gamma_init="one’)
Batch normalization layer (Ioffe and Szegedy, 2014) [R2121] .

Normalize the activations of the previous layer at each batch, i.e. applies a transformation that maintains the
mean activation close to 0 and the activation standard deviation close to 1.

Parameters epsilon small float > 0
Fuzz parameter. npdl expects epsilon >= le-5.
axis : integer

axis along which to normalize in mode 0. For instance, if your input tensor has shape
(samples, channels, rows, cols), set axis to 1 to normalize per feature map (channels
axis).

momentum : float

momentum in the computation of the exponential average of the mean and standard
deviation of the data, for feature-wise normalization.

beta_init : npdl.initializations.Initializer

name of initialization function for shift parameter, or alternatively, npdl function to use
for weights initialization.

gamma_init : npdl.initializations.Initializer

name of initialization function for scale parameter, or alternatively, npdl function to use
for weights initialization.

Input shape

Arbitrary. Use the keyword argument input_shape (tuple of integers, does not include
the samples axis) when using this layer as the first layer in a model.

Output shape

6 Chapter 1. API References

numpydl Documentation, Release 0.4.0

Same shape as input.

References

[R2121]

1.1.6 Pooling Layers
class npdl.layers.MeanPooling (pool_size)
Average pooling operation for spatial data.
Parameters pool_size : tuple of 2 integers,

factors by which to downscale (vertical, horizontal). (2, 2) will halve the image in each
dimension.

Returns 4D numpy.array

with shape (nb_samples, channels, pooled_rows, pooled_cols) if dim_ordering="th’
or 4D tensor with shape: (samples, pooled_rows, pooled_cols, channels) if
dim_ordering="tf".

class npdl.layers.MaxPooling (pool_size)
Max pooling operation for spatial data.

Parameters pool_size : tuple of 2 integers,

factors by which to downscale (vertical, horizontal). (2, 2) will halve the image in each
dimension.

Returns 4D numpy.array

with shape (nb_samples, channels, pooled_rows, pooled_cols) if dim_ordering="th’
or 4D tensor with shape: (samples, pooled_rows, pooled_cols, channels) if
dim_ordering="tf".

1.1.7 Recurrent Layers

class npdl.layers.Recurrent (n_out, n_in=None, nb_batch=None, nb_seq=None,
init="glorot_uniform’, inner_init="orthogonal’, activation="tanh’,
return_sequence=False)
A recurrent neural network (RNN) is a class of artificial neural network where connections between units form a

directed cycle. This creates an internal state of the network which allows it to exhibit dynamic temporal behavior.
Unlike feedforward neural networks, RNNs can use their internal memory to process arbitrary sequences of
inputs. This makes them applicable to tasks such as unsegmented connected handwriting recognition[R2324]_
or speech recognition.[R2424]_

Parameters n_out : int
hidden number
n_in : int or None
input dimension
nb_batch : int or None

batch size

1.1. npdl.layers 7

numpydl Documentation, Release 0.4.0

nb_seq : int or None
sequent length
init : npdl.intializations.Initliazer
init function
inner_init : npdl.intializations.Initliazer
inner init function, between hidden to hidden
activation : npdl.activations.Activation
activation function
return_sequence : bool

return total sequence or not.

References

[R2324], [R2424]

class npdl.layers.SimpleRNN (**kwargs)
Fully-connected RNN where the output is to be fed back to input.

o¢ = tanh(Ugzy + Wior—1 + by)

Parameters output_dim: dimension of the internal projections and the final output.
init: weight initialization function.
Can be the name of an existing function (str), or a npdl function.
inner_init: initialization function of the inner cells.
activation: activation function.
Can be the name of an existing function (str), or a npdl function.
return_sequence: if ‘return_sequences‘, 3D ‘numpy.array‘ with shape

(batch_size, timesteps, units) will be returned. Else, return 2D numpy.array with shape
(batch_size, units).

References

[R2727]

class npdl.layers.GRU (gate_activation="sigmoid’, need_grad=True, **kwargs)
Gated recurrent units (GRUs) are a gating mechanism in recurrent neural networks, introduced in 2014. Their
performance on polyphonic music modeling and speech signal modeling was found to be similar to that of long
short-term memory.[R2930]_ They have fewer parameters than LSTM, as they lack an output gate.[R3030]_

Zt = O'(Uzl‘t + tht—l + bz)
2z =1y = o(Upwy + Wyhe—1 + by)
hy = tanh(Upxe + Wi (si—1 © 1¢) + bp)

se=(1—2)Ohs + 2 © 5.1

8 Chapter 1. API References

numpydl Documentation, Release 0.4.0

Parameters gate_activation : npdl.activations.Activation
Gate activation.
need_grad bool

If True, will calculate gradients.

References

[R2930], [R3030]

class npdl.layers.LSTM (gate_activation="sigmoid’, need_grad=True, forget_bias_num=1,
**kwargs)
Bacth LSTM, support mask, but not support training.

Long short-term memory (LSTM) is a recurrent neural network (RNN) architecture (an artificial neural network)
proposed in 1997 by Sepp Hochreiter and Jiirgen Schmidhuber [R3334] and further improved in 2000 by Felix
Gers et al.[R3434]_ Like most RNNs, a LSTM network is universal in the sense that given enough network units
it can compute anything a conventional computer can compute, provided it has the proper weight matrix, which
may be viewed as its program.

fi=0Uszy + Wyhi_q1 + by)

it = o(Uszy + Wihe—1 + by)
ot = o(Upxy + Wohi—1 + bp)
g = tanh(Ugzy + Wohi—1 + by)
= [t Oc—1+1i O g
ht = oy © tanh(ct)
Parameters gate_activation : npdl.activations.Activation
Gate activation.
need_grad bool
If True, will calculate gradients.
forget_bias_num : int

integer.

References

[R3334], [R3434]

class npdl.layers.BatchLSTM (gate_activation="sigmoid’, need_grad=True, forget_bias_num=1,

**kwargs)
Batch LSTM, support training, but not support mask.

Parameters gate_activation : npdl.activations.Activation
Gate activation.
need_grad bool

If True, will calculate gradients.

1.1. npdl.layers 9

numpydl Documentation, Release 0.4.0

forget_bias_num : int

integer.

References

[R3738], [R3838]

backward (pre_grad, dcn=None, dhn=None)
Backward propagation.

Parameters pre_grad : numpy.array
Gradients propagated to this layer.
den : numpy.array
Gradients of cell state at n time step.
dhn : numpy.array
Gradients of hidden state at n time step.
Returns numpy.array
The gradients propagated to previous layer.

connect_to (prev_layer=None)
Connection to the previous layer.

Parameters prev_layer : npdl.layers.Layer or None
Previous layer.

AlIlW : numpy.array

type |i|f|o| g
bias
x2h
h2h

forward (input, c0=None, hO=None)
Forward propagation.

Parameters input : numpy.array
input should be of shape (nb_batch,nb_seq,n_in)
c0 : numpy.array or None
init cell state
h0 : numpy.array or None
init hidden state
Returns numpy.array

Forward results.

1.1.8 Shape Layers

class npdl.layers.Flatten (outdim=2)

10 Chapter 1. API References

numpydl Documentation, Release 0.4.0

Base Layers

Layer

The Layer class represents a single layer of a neural net-
work.

Core Layers

Linear A fully connected layer implemented as the dot product of
inputs and weights.

Dense A fully connected layer implemented as the dot product of
inputs and weights.

Softmax A fully connected layer implemented as the dot product of
inputs and weights.

Dropout A dropout layer.

Convolution Layers

Convolution

Convolution operator for filtering windows of two-
dimensional inputs.

Embedding Layer

Embedding

Normalization Layer

BatchNormal

Batch normalization layer (Ioffe and Szegedy, 2014) [R11]

Pooling Layers

MeanPooling

Average pooling operation for spatial data.

MaxPooling

Max pooling operation for spatial data.

Recurrent Layers

Recurrent

A recurrent neural network (RNN) is a class of artificial
neural network where connections between units form a di-
rected cycle.

SimpleRNN

Fully-connected RNN where the output is to be fed back to
input.

GRU

Gated recurrent units (GRUs) are a gating mechanism in
recurrent neural networks, introduced in 2014.

Continued on next page

1.1. npdl.layers

11

numpydl Documentation, Release 0.4.0

Table 1.7 — continued from previous page

LSTM Bacth LSTM, support mask, but not support training.

BatchLSTM Batch LSTM, support training, but not support mask.

Shape Layers

Flatten

1.2 npdl.activations

Non-linear activation functions for artificial neurons.

A function used to transform the activation level of a unit (neuron) into an output signal. Typically, activation functions
have a “squashing” effect. Together with the PSP function (which is applied first) this defines the unit type. Neural
Networks supports a wide range of activation functions.

1.2.1 Activations

Activation() Base class for activations.

Sigmoid() Sigmoid activation function.

Tanh() Tanh activation function.

ReLU() Rectify activation function.

Linear() Linear activation function.

Softmax() Softmax activation function.
E11iot([steepness]) A fast approximation of sigmoid.
SymmetricElliot([steepness]) Elliot symmetric sigmoid transfer function.
SoftPIlus() Softplus activation function.

SoftSign() SoftSign activation function.

1.2.2 Detailed Description
class npdl.activations.Activation
Base class for activations.

derivative (input=None)
Backward step.

Parameters input : numpy.array, optional.
If provide input, this function will not use last_forward.

forward (input)
Forward Step.

Parameters input : numpy.array
the input matrix.

class npdl.activations.Sigmoid
Sigmoid activation function.

derivative (input=None)

12 Chapter 1. API References

numpydl Documentation, Release 0.4.0

The derivative of sigmoid is

W1 p@) @ ol)
T (I+e)2
T (I+ev)

Returns float32

The derivative of sigmoid function.

forward (input, *args, **kwargs)

A sigmoid function is a mathematical function having a characteristic “S”’-shaped curve or sigmoid curve.
Often, sigmoid function refers to the special case of the logistic function and defined by the formula
¢(x) = 7= (given the input x).

Parameters input : float32
The activation (the summed, weighted input of a neuron).
Returns float32 in [0, 1]

The output of the sigmoid function applied to the activation.

class Sigmoid(Activation):
""rsigmoid activation function.

mmn

def

def

def

__init_ (self):
super (Sigmoid, self).__init__ ()
forward(self, input, <*args, =**kwargs):

"""A sigmoid function is a mathematical function having a

characteristic "S"-shaped curve or sigmoid curve. Often,

sigmoid function refers to the special case of the logistic

function and defined by the formula :math: \\varphi(x) = \\frac{l}{1 + e"{-x}}

(given the input :math: 'x).

Parameters

input : float32
The activation (the summed, weighted input of a neuron).

float32 in [0, 1]
The output of the sigmoid function applied to the activation.

mnn

self.last_forward = 1.0 / (1.0 + np.exp(-input))
return self.last_forward

derivative (self, input=None) :
"""The derivative of sigmoid 1is

1.2. npdl.activations 13

numpydl Documentation, Release 0.4.0

. math:: \\frac{dy}{dx} & = (1-\\varphi(x)) \\otimes \\varphi (x) VALY
& = \\frac{e™{-x}}{ (1+e"{-x}) "2} \\\\
& \\fracfe"x}{ (1+e’x) "2}

float32

The derivative of sigmoid function.
last_forward = self.forward(input) if input else self.last_forward
return np.multiply(last_forward, 1 - last_forward)

class npdl.activations.Tanh
Tanh activation function.

The hyperbolic tangent function is an old mathematical function. It was first used in the work by L’ Abbe Sauri
(1774).

derivative (input=None)
The derivative of tanh () functions is

d d sinh(x
%tanh(x) T dr coshEx;
B cosh(z) 4L sinh(x) — sinh(z) 4 cosh(z)
cosh?(x)
cosh(x)cosh(x) — sinh(x)sinh(x)
- cosh?(x)
=1 — tanh?(x)

Returns float32
The derivative of tanh function.

forward (input)
This function is easily defined as the ratio between the hyperbolic sine and the cosine functions (or ex-
panded, as the ratio of the halfdifference and halfsum of two exponential functions in the points z and
—2):

sinh(z)
cosh(z)

z

tanh(z) =

e —e”
e 4+ e~ %

Fortunately, numpy provides tanh () methods. So in our implementation, we directly use ¢(z) =
tanh(z).

Parameters x : float32
The activation (the summed, weighted input of a neuron).
Returns float32 in [-1, 1]

The output of the tanh function applied to the activation.

class Tanh (Activation) :

14 Chapter 1. API References

numpydl Documentation, Release 0.4.0

"""Tanh activation function.

The hyperbolic tangent function is an old mathematical function.
It was first used in the work by L'Abbe Sauri (1774).

mon

def _ init_ (self):
super (Tanh, self).__init__ ()

def forward(self, input):
"""This function is easily defined as the ratio between the hyperbolic
sine and the cosine functions (or expanded, as the ratio of the
halfdifference and halfsum of two exponential functions in the
points :math: 'z and :math: -z'):

math:: tanh(z) & = \\frac{sinh(z)}{cosh(z)} \\\\
& = \\frac{ez - e*{-z}}{e’z + e"{-z}}

Fortunately, numpy provides :meth: tanh’ methods. So in our implementation,
we directly use :math: \\varphi (x) = \\tanh(x) .

Parameters

x : float32
The activation (the summed, weighted input of a neuron).

Returns
float32 in [-1, 1]
The output of the tanh function applied to the activation.
mmn
self.last_forward = np.tanh (input)
return self.last_forward

def derivative(self, input=None) :
"""The derivative of :meth: tanh’ functions 1is

math:: \\frac{d}{dx} tanh(x) & = \\frac{d}{dx} \\frac{sinh(x)}{cosh(x)}_
<\
& = \\frac{cosh(x) \\frac{d}{dx}sinh(x) - sinh(x) \\frac{d}{dx}
—cosh(x) }{ cosh”2(x)} \\\\
& = \\frac{ cosh(x) cosh(x) - sinh(x) sinh(x) }{ cosh”2(x)} VAL
& = 1 - tanh”2(x)

Returns

float32

The derivative of tanh function.
mmmn

last_forward = self.forward(input) if input else self.last_forward
return 1 - np.power (last_forward, 2)

class npdl.activations.ReLU
Rectify activation function.

Two additional major benefits of ReLUs are sparsity and a reduced likelihood of vanishing gradient. But first

1.2. npdl.activations 15

numpydl Documentation, Release 0.4.0

recall the definition of a ReLU is h = max(0,a) where a = Wx + b.

One major benefit is the reduced likelihood of the gradient to vanish. This arises when a > 0. In this regime the
gradient has a constant value. In contrast, the gradient of sigmoids becomes increasingly small as the absolute
value of x increases. The constant gradient of ReLUs results in faster learning.

The other benefit of ReLUs is sparsity. Sparsity arises when a0. The more such units that exist in a layer
the more sparse the resulting representation. Sigmoids on the other hand are always likely to generate some
non-zero value resulting in dense representations. Sparse representations seem to be more beneficial than dense
representations.

derivative (input=None)
The point-wise derivative for ReLU is % =1,ifx >0, or Z—Z =0,ifx <=0.

Returns float32
The derivative of ReLU function.

forward (input)
During the forward pass, it inhibits all inhibitions below some threshold , typically 0. In other words, it
computes point-wise

y = maz(0,)
Parameters x : float32
The activation (the summed, weighted input of a neuron).

Returns float32

The output of the rectify function applied to the activation.

class RelLU (Activation):
"""Rectify activation function.

Two additional major benefits of ReLUs are sparsity and a reduced
likelihood of vanishing gradient. But first recall the definition
of a ReLU is :math: h=max(0,a)’ where :math: a=Wx+b .

One major benefit is the reduced likelihood of the gradient to vanish.

This arises when :math: a>0". In this regime the gradient has a constant value.
In contrast, the gradient of sigmoids becomes increasingly small as the

absolute value of :math: x° increases. The constant gradient of ReLUs results in
faster learning.

The other benefit of ReLUs is sparsity. Sparsity arises when :math: a0’ .

The more such units that exist in a layer the more sparse the resulting
representation. Sigmoids on the other hand are always likely to generate

some non-zero value resulting in dense representations. Sparse representations
seem to be more beneficial than dense representations.

mmn

def _ init__ (self):
super (ReLU, self).__init__ ()

def forward(self, input):
"""During the forward pass, it inhibits all inhibitions below some
threshold :math:’ ", typically :math: 0°. In other words, it computes point-—
—wise

16 Chapter 1. API References

numpydl Documentation, Release 0.4.0

def

math:: y=max(0,x)

Parameters

x : float32
The activation (the summed, weighted input of a neuron).

Returns

float32
The output of the rectify function applied to the activation.
mirnm
self.last_forward = input
return np.maximum(0.0, input)

derivative (self, input=None) :
"""The point-wise derivative for ReLU is :math: \\frac{dy}{dx} = 1°
:math: 'x>0", or :math: \\frac{dy}{dx} = 0, 1if :math: x<=0".

Returns
float32
The derivative of ReLU function.
mmn
last_forward = input if input else self.last_forward
res = np.zeros(last_forward.shape, dtype=get_dtype())
res|[last_forward > 0] = 1.
return res

class npdl.activations.Linear

Linear activation function.

derivative (input=None)

Backward propagation. The backward also return identity matrix.
Returns float32

The derivative of linear function.

forward (input)

It’s also known as identity activation funtion. The forward step is p(z) = «
Parameters x : float32
The activation (the summed, weighted input of a neuron).
Returns float32

The output of the identity applied to the activation.

class Linear (Activation) :

"""Linear activation function.

mmn

def

__init_ (self):

super (Linear, self).__init__ ()

1.2. npdl.activations 17

numpydl Documentation, Release 0.4.0

def forward(self, input):
"""It's also known as identity activation funtion. The
forward step is :math: \\varphi (x) = x°'

Parameters

x : float32
The activation (the summed, weighted input of a neuron).

Returns
float32
The output of the identity applied to the activation.
mmn
self.last_forward = input
return input

def derivative (self, input=None) :
"""Backward propagation.
The backward also return identity matrix.

float32
The derivative of linear function.

mnn

last_forward = input if input else self.last_forward
return np.ones(last_forward.shape, dtype=get_dtype())

class npdl.activations.Softmax
Softmax activation function.

derivative (input=None)
Backward propagation.

Returns float32
The derivative of Softmax function.

forward (input) _
p(x); = Eﬁijexk where K is the total number of neurons in the layer. This activation function gets
k=1
applied row-wise.
Parameters x : float32
The activation (the summed, weighted input of a neuron).
Returns float32 where the sum of the row is 1 and each single value is in [0, 1]

The output of the softmax function applied to the activation.

class Softmax (Activation) :

"""Softmax activation function.
mmn

18 Chapter 1. API References

numpydl Documentation, Release 0.4.0

def _ init_ (self):
super (Softmax, self).__init__ ()

def forward(self, input):
""emath: \\varphi (\\mathbf{x})_7j =

\\frac{e"{\mathbf{x}_j}}{\sum_{k=1}"K e”{\mathbf{x}_k}}"
where :math: K' 1is the total number of neurons in the layer.

activation function gets applied row-wise.

Parameters

x : float32

The activation (the summed, weighted input of a neuron).

float32 where the sum of the row is 1 and each single value is in [0,

This

The output of the softmax function applied to the activation.

mn

assert np.ndim(input) == 2

self.last_forward = input

X = input - np.max(input, axis=1, keepdims=True)
exXp_x = np.exp (x)

s = exp_x / np.sum(exp_x, axis=1, keepdims=True)
return s

def derivative(self, input=None) :
"""Backward propagation.

Returns

float32
The derivative of Softmax function.

mon

last_forward = input if input else self.last_forward
return np.ones (last_forward.shape, dtype=get_dtype())

1]

class npdl.activations.Elliot (steepness=1)
A fast approximation of sigmoid.

The function was first introduced in 1993 by D.L. Elliot under the title A Better Activation Function for Artificial
Neural Networks. The function closely approximates the Sigmoid or Hyperbolic Tangent functions for small
values, however it takes longer to converge for large values (i.e. It doesn’t go to 1 or 0 as fast), though this isn’t

particularly a problem if you’re using it for classification.

derivative (input=None)
Backward propagation.

Returns float32
The derivative of Elliot function.

forward (input)
Forward propagation.

Parameters x : float32

The activation (the summed, weighted input of a neuron).

1.2. npdl.activations

19

numpydl Documentation, Release 0.4.0

Returns float32

The output of the softplus function applied to the activation.

class Elliot (Activation):
"mno A fast approximation of sigmoid.

The function was first introduced

in 1993 by D.L. Elliot under the title A Better Activation Function for
Artificial Neural Networks. The function closely approximates the
Sigmoid or Hyperbolic Tangent functions for small values, however it
takes longer to converge for large values (i.e. It doesn't go to 1 or

0 as fast), though this isn't particularly a problem if you're using

it for classification.

mmn

def _ init_ (self, steepness=1):
super (Elliot, self).__init__ ()

self.steepness = steepness

def forward(self, input):
"""Forward propagation.

Parameters

x : float32
The activation (the summed, weighted input of a neuron).

float32
The output of the softplus function applied to the activation.
mmrn
self.last_forward = 1 + np.abs(input * self.steepness)
return 0.5 x self.steepness * input / self.last_forward + 0.5

def derivative(self, input=None) :
"""Backward propagation.

float32
The derivative of Elliot function.
last_forward = 1 + np.abs(input * self.steepness) if input else self.last_
—forward
return 0.5 % self.steepness / np.power (last_forward, 2)

class npdl.activations.SymmetricElliot (steepness=1I)
Elliot symmetric sigmoid transfer function.

derivative (input=None)
Backward propagation.

20 Chapter 1. API References

numpydl Documentation, Release 0.4.0

Returns float32
The derivative of SymmetricElliot function.

forward (input)
Forward propagation.

Parameters x : float32
The activation (the summed, weighted input of a neuron).
Returns float32

The output of the softplus function applied to the activation.

class SymmetricElliot (Activation):
""rElliot symmetric sigmoid transfer function.

mon

def _ init__ (self, steepness=1):
super (SymmetricElliot, self).__init__ ()
self.steepness = steepness

def forward(self, input):
"""Forward propagation.

Parameters

x : float32
The activation (the summed, weighted input of a neuron).

float32

The output of the softplus function applied to the activation.
self.last_forward = 1 + np.abs(input * self.steepness)
return input x self.steepness / self.last_forward

def derivative(self, input=None) :
"""Backward propagation.

Returns
float32
The derivative of SymmetricElliot function.
mmn
last_forward = 1 + np.abs(input = self.steepness) if input else self.last_
—forward
return self.steepness / np.power (last_forward, 2)

class npdl.activations.SoftPlus
Softplus activation function.

derivative (input=None)
Backward propagation.

1.2. npdl.activations 21

numpydl Documentation, Release 0.4.0

Returns float32
The derivative of Softplus function.
forward (input)
p(x) = log(1 + e”)
Parameters x : float32
The activation (the summed, weighted input of a neuron).

Returns float32

The output of the softplus function applied to the activation.

class SoftPlus (Activation):

"""Softplus activation function.
mmwn

def _ init_ (self):
super (SoftPlus, self).__init__ ()

def forward(self, input):
mnremath: \\varphi(x) = \\log(l + e’x)"

Parameters

x : float32
The activation (the summed, weighted input of a neuron).

Returns

float32
The output of the softplus function applied to the activation.

mnn

self.last_forward = np.exp (input)
return np.log(l + self.last_forward)

def derivative(self, input=None) :
"""Backward propagation.

float32
The derivative of Softplus function.

mmn

last_forward = np.exp(input) if input else self.last_forward
return last_forward / (1 + last_forward)

class npdl.activations.SoftSign
SoftSign activation function.

derivative (input=None)
Backward propagation.

Returns float32

The derivative of SoftSign function.

22 Chapter 1. API References

numpydl Documentation, Release 0.4.0

forward (input)
Forward propagation.

Parameters x : float32
The activation (the summed, weighted input of a neuron).
Returns float32

The output of the softplus function applied to the activation.

class SoftSign (Activation):
"""SoftSign activation function.

mmn

def _ init_ (self):
super (SoftSign, self).__init__ ()

def forward(self, input):
"""Forward propagation.

Parameters

x : float32
The activation (the summed, weighted input of a neuron).

float32
The output of the softplus function applied to the activation.

mn

self.last_forward = np.abs(input) + 1
return input / self.last_forward

def derivative(self, input=None) :
"""Backward propagation.

Returns

float32
The derivative of SoftSign function.

mmn

last_forward = np.abs(input) + 1 if input else self.last_forward
return 1. / np.power (last_forward, 2)

1.3 npdl.initializations

1.3.1 Initializers

Zero

Continued on next page

1.3. npdl.initializations 23

numpydl Documentation, Release 0.4.0

Table 1.10 — continued from previous page

One

Uniform

Normal

Orthogonal

1.3.2 Detailed Description

1.4 npdl.objectives

Provides some minimal help with building loss expressions for training or validating a neural network.

These functions build element- or item-wise loss expressions from network predictions and targets.

1.4.1 Examples

Assuming you have a simple neural network for 3-way classification:

>>>
>>>
>>>
>>>
>>>

import npdl

model

model.
model.
model.

—005))

= npdl.model.Model ()

add (npdl.layers.Dense (n_out=100, n_in=50))
add (npdl.layers.Dense (n_out=3, activation=npdl.activations.Softmax()))

compile (loss=npdl.objectives.SCCE (),

optimizer=npdl.optimizers.SGD (1lr=0.

1.4.2 Objectives

MeanSquaredError

Computes the element-wise squared difference between
targets and outputs.

MSE

alias of MeanSquaredError

HellingerDistance

Computes the multi-class hinge loss between predictions
and targets.

HeD

alias of HellingerDistance

BinaryCrossEntropy

Computes the binary cross-entropy between predictions
and targets.

BCE

alias of BinaryCrossEntropy

SoftmaxCategoricalCrossEntropy

Computes the categorical cross-entropy between predic-
tions and targets.

SCCE

alias of SoftmaxCategoricalCrossEntropy

1.4.3 Detailed Description

class npdl.objectives.Objective
An objective function (or loss function, or optimization score function) is one of the two parameters required to
compile a model.

backward (outputs, targets)
Backward function.

Parameters outputs, targets : numpy.array

24

Chapter 1. API References

numpydl Documentation, Release 0.4.0

The arrays to compute the derivatives of them.
Returns numpy.array
An array of derivative.

forward (outputs, targets)
Forward function.

class npdl.objectives.MeanSquaredError
Computes the element-wise squared difference between targets and outputs.

In statistics, the mean squared error (MSE) or mean squared deviation (MSD) of an estimator (of a procedure for
estimating an unobserved quantity) measures the average of the squares of the errors or deviations—that is, the
difference between the estimator and what is estimated. MSE is a risk function, corresponding to the expected
value of the squared error loss or quadratic loss. The difference occurs because of randomness or because the
estimator doesn’t account for information that could produce a more accurate estimate. [R4747]

The MSE is a measure of the quality of an estimator—it is always non-negative, and values closer to zero are
better.

The MSE is the second moment (about the origin) of the error, and thus incorporates both the variance of the
estimator and its bias. For an unbiased estimator, the MSE is the variance of the estimator. Like the variance,
MSE has the same units of measurement as the square of the quantity being estimated. In an analogy to stan-
dard deviation, taking the square root of MSE yields the root-mean-square error or root-mean-square deviation
(RMSE or RMSD), which has the same units as the quantity being estimated; for an unbiased estimator, the
RMSE is the square root of the variance, known as the standard deviation.

Notes

This is the loss function of choice for many regression problems or auto-encoders with linear output units.

References

[R4747]

backward (outputs, targets)
MeanSquaredError backward propagation.

dE=p—1t

Parameters outputs, targets : numpy.array

The arrays to compute the derivative between them.
Returns numpy.array

Derivative.

forward (outputs, targets)
MeanSquaredError forward propagation.

L=(p-t)?
Parameters outputs, targets : numpy.array

The arrays to compute the squared difference between.

Returns numpy.array

1.4. npdl.objectives 25

numpydl Documentation, Release 0.4.0

An expression for the element-wise squared difference.

npdl.objectives.MSE
alias of MeanSquaredError

class npdl.objectives.HellingerDistance
Computes the multi-class hinge loss between predictions and targets.

In probability and statistics, the Hellinger distance (closely related to, although different from, the Bhattacharyya
distance) is used to quantify the similarity between two probability distributions. It is a type of f-divergence.
The Hellinger distance is defined in terms of the Hellinger integral, which was introduced by Ernst Hellinger in
1909.[R4950]_ /R5050]

Notes

This is an alternative to the categorical cross-entropy loss for multi-class classification problems

References

[R4950], [R5050]

backward (outputs, targets)
HellingerDistance forward propagation.

forward (outputs, targets)
HellingerDistance forward propagation.

Parameters outputs : numpy 2D array

outputs in (0, 1), such as softmax output of a neural network, with data points in rows
and class probabilities in columns.

targets : numpy 2D array

Either a vector of int giving the correct class index per data point or a 2D tensor of one-
hot encoding of the correct class in the same layout as predictions (non-binary targets
in [0, 1] do not work!)

Returns numpy 1D array
An expression for the Hellinger Distance

npdl.objectives.HeD
alias of HellingerDistance

class npdl.objectives.BinaryCrossEntropy (epsilon=1e-11)
Computes the binary cross-entropy between predictions and targets.

Returns numpy array

An expression for the element-wise binary cross-entropy.

Notes

This is the loss function of choice for binary classification problems and sigmoid output units.

backward (outputs, targets)
Backward pass.

26 Chapter 1. API References

numpydl Documentation, Release 0.4.0

Parameters outputs : numpy.array
Predictions in (0, 1), such as sigmoidal output of a neural network.
targets : numpy.array
Targets in [0, 1], such as ground truth labels.

forward (outputs, targets)
Forward pass.

L = —tlog(p) — (1 —t)log(1 — p)

Parameters outputs : numpy.array
Predictions in (0, 1), such as sigmoidal output of a neural network.
targets : numpy.array
Targets in [0, 1], such as ground truth labels.

npdl.objectives.BCE
alias of BinaryCrossEntropy

class npdl.objectives.SoftmaxCategoricalCrossEntropy (epsilon=1e-11)
Computes the categorical cross-entropy between predictions and targets.

Notes

This is the loss function of choice for multi-class classification problems and softmax output units. For hard
targets, i.e., targets that assign all of the probability to a single class per data point, providing a vector of int for
the targets is usually slightly more efficient than providing a matrix with a single 1.0 per row.

backward (outputs, targets)
SoftmaxCategoricalCrossEntropy backward propagation.

dE=p—1t

Parameters outputs : numpy 2D array

Predictions in (0, 1), such as softmax output of a neural network, with data points in
rows and class probabilities in columns.

targets : numpy 2D array

Either targets in [0, 1] matching the layout of outputs, or a vector of int giving the correct
class index per data point.

Returns numpy 1D array

forward (outputs, targets)
SoftmaxCategoricalCrossEntropy forward propagation.

Li=—> ti;log(pi;)
J

Parameters outputs : numpy.array

Predictions in (0, 1), such as softmax output of a neural network, with data points in
rows and class probabilities in columns.

targets : numpy.array

1.4. npdl.objectives 27

numpydl Documentation, Release 0.4.0

Either targets in [0, 1] matching the layout of outputs, or a vector of int giving the correct
class index per data point.

Returns numpy 1D array
An expression for the item-wise categorical cross-entropy.

npdl.objectives.SCCE
alias of SoftmaxCategoricalCrossEntropy

1.5 npdl.optimizers

Functions to generate Theano update dictionaries for training.
The update functions implement different methods to control the learning rate for use with stochastic gradient descent.

Update functions take a loss expression or a list of gradient expressions and a list of parameters as input and return an
ordered dictionary of updates:

1.5.1 Examples

Using SGD to define an update dictionary for a toy example network:

>>> import npdl

>>> from npdl.activations import ReLU

>>> from npdl.activations import Softmax

>>> from npdl.objectives import SCCE

>>> model = npdl.model.Model ()

>>> model.add (npdl.layers.Dense (n_out=100, n_in=50, activation=RelLU()))
>>> model.add (npdl.layers.Dense (n_out=200, activation=ReLU()))

>>> model.add (npdl.layers.Dense (n_out=100, activation=ReLU()))

>>> model.add (npdl.layers.Dense (n_out=10, activation=Softmax()))

>>> model.compile (1loss=SCCE (), optimizer=npdl.optimizers.SGD (1lr=0.005))

1.5.2 Optimizers

SGD Stochastic Gradient Descent (SGD) updates

Moment um Stochastic Gradient Descent (SGD) updates with momen-
tum

NesterovMomentum Stochastic Gradient Descent (SGD) updates with Nesterov
momentum

Adagrad Adagrad updates

RMSprop RMSProp updates

Adadelta Adadelta updates

Adam Adam updates

Adamax Adamax updates

1.5.3 Detailed Description

class npdl.optimizers.SGD (*args, **kwargs)
Stochastic Gradient Descent (SGD) updates

28 Chapter 1. API References

numpydl Documentation, Release 0.4.0

Generates update expressions of the form:
* param := param — learning_rate x gradient

class npdl.optimizers.Momentum (momentum=0.9, *args, **kwargs)
Stochastic Gradient Descent (SGD) updates with momentum

Generates update expressions of the form:
e velocity := momentum *» velocity - learning_rate » gradient

* param := param + velocity

Parameters momentum : float

The amount of momentum to apply. Higher momentum results in smoothing over more
update steps. Defaults to 0.9.

Notes

Higher momentum also results in larger update steps. To counter that, you can optionally scale your learning
rate by I - momentum.

class npdl.optimizers.NesterovMomentum (momentum=0.9, *args, **kwargs)
Stochastic Gradient Descent (SGD) updates with Nesterov momentum

Generates update expressions of the form:
e velocity := momentum *» velocity - learning rate » gradient

® param := param + momentum * velocity - learning rate x gradient

Parameters momentum : float

The amount of momentum to apply. Higher momentum results in smoothing over more
update steps. Defaults to 0.9.

Notes

Higher momentum also results in larger update steps. To counter that, you can optionally scale your learning
rate by / - momentum.

The classic formulation of Nesterov momentum (or Nesterov accelerated gradient) requires the gradient to be
evaluated at the predicted next position in parameter space. Here, we use the formulation described at https:
//github.com/lisa-lab/pylearn2/pull/136#issuecomment- 10381617, which allows the gradient to be evaluated at
the current parameters.

class npdl.optimizers.Adagrad (epsilon=1e-006, *args, **kwargs)
Adagrad updates

Scale learning rates by dividing with the square root of accumulated squared gradients. See [R6566] for further
description.

Parameters epsilon : float

Small value added for numerical stability.

1.5. npdl.optimizers 29

https://github.com/lisa-lab/pylearn2/pull/136#issuecomment-10381617
https://github.com/lisa-lab/pylearn2/pull/136#issuecomment-10381617

numpydl Documentation, Release 0.4.0

Notes

Using step size eta Adagrad calculates the learning rate for feature i at time step t as:

_ Ui
Nti = #gt,i
N gt
as such the learning rate is monotonically decreasing.

Epsilon is not included in the typical formula, see [R6666].

References

[R6566], [R6666]

class npdl.optimizers.RMSprop (rho=0.9, epsilon=1e-06, *args, **kwargs)
RMSProp updates

Scale learning rates by dividing with the moving average of the root mean squared (RMS) gradients. See
[R6969] for further description.

Parameters rho : float
Gradient moving average decay factor.
epsilon : float

Small value added for numerical stability.

Notes

rho should be between 0 and 1. A value of rho close to 1 will decay the moving average slowly and a value
close to 0 will decay the moving average fast.

Using the step size 1 and a decay factor p the learning rate 7, is calculated as:

_ n
m = 7T e
References
[R6969]

class npdl.optimizers.Adadelta (rho=0.9, epsilon=1e-06, *args, **kwargs)
Adadelta updates

Scale learning rates by the ratio of accumulated gradients to accumulated updates, see /[R7/71] and notes for
further description.

Parameters rho : float
Gradient moving average decay factor.
epsilon : float
Small value added for numerical stability.

decay : float

30 Chapter 1. API References

numpydl Documentation, Release 0.4.0

Decay parameter for the moving average.

Notes

rho should be between 0 and 1. A value of rho close to 1 will decay the moving average slowly and a value close
to 0 will decay the moving average fast.

rho = 0.95 and epsilon=1e-6 are suggested in the paper and reported to work for multiple datasets (MNIST,
speech).

In the paper, no learning rate is considered (so learning_rate=1.0). Probably best to keep it at this value. epsilon
is important for the very first update (so the numerator does not become 0).

Using the step size eta and a decay factor rho the learning rate is calculated as:

re=pri1 4+ (1—p)xg?

_ W/St—1TE€
Ui n \/m
st = psi—1+ (L—p) = (e * g)°
References
[R7171]

class npdl.optimizers.Adam (betal=0.9, beta2=0.999, epsilon=1e-08, *args, **kwargs)
Adam updates

Adam updates implemented as in /R7373].
Parameters betal : float
Exponential decay rate for the first moment estimates.
beta2 : float
Exponential decay rate for the second moment estimates.
epsilon : float

Constant for numerical stability.

Notes

The paper [R7373] includes an additional hyperparameter lambda. This is only needed to prove convergence of
the algorithm and has no practical use (personal communication with the authors), it is therefore omitted here.

References

[R7373]

class npdl.optimizers.Adamax (betal=0.9, beta2=0.999, epsilon=1e-08, *args, **kwargs)
Adamax updates

Adamax updates implemented as in /R7575]. This is a variant of of the Adam algorithm based on the infinity
norm.

Parameters betal : float

1.5. npdl.optimizers 31

numpydl Documentation, Release 0.4.0

Exponential decay rate for the first moment estimates.
beta2 : float

Exponential decay rate for the second moment estimates.
epsilon : float

Constant for numerical stability.

References

[R7575]

1.6 npdl.model

Linear stack of layers.

1.6.1 Detailed Description

class npdl.model.Model (layers=None)

predict (X)
Calculate an output Y for the given input X.

1.7 npdl.utils

1.7.1 Data Utils

npdl.utils.one_hot (labels, nb_classes=None)

One-hot encoding is often used for indicating the state of a state machine. When using binary or Gray code, a
decoder is needed to determine the state. A one-hot state machine, however, does not need a decoder as the state
machine is in the nth state if and only if the nth bit is high.

A ring counter with 15 sequentially-ordered states is an example of a state machine. A one-hot implemen-
tation would have 15 flip flops chained in series with the Q output of each flip flop connected to the D input of
the next and the D input of the first flip flop connected to the Q output of the 15th flip flop. The first flip flop in
the chain represents the first state, the second represents the second state, and so on to the 15th flip flop which
represents the last state. Upon reset of the state machine all of the flip flops are reset to 0 except the first in the
chain which is set to 1. The next clock edge arriving at the flip flops advances the one hot bit to the second
flip flop. The hot bit advances in this way until the 15th state, after which the state machine returns to the first
state.

An address decoder converts from binary or gray code to one-hot representation. A priority encoder converts
from one-hot representation to binary or gray code.

In natural language processing, a one-hot vector is a 1N matrix (vector) used to distinguish each word in a
vocabulary from every other word in the vocabulary. The vector consists of Os in all cells with the exception of
a single 1 in a cell used uniquely to identify the word.

Parameters labels iterable

nb_classes : (iterable, optional)

32

Chapter 1. API References

numpydl Documentation, Release 0.4.0

Returns numpy.array
Returns a one-hot numpy array.

npdl.utils.unhot (one_hot_labels)
Get argmax indexes.

Parameters one_hot_labels : numpy.array
Returns numpy.array

Returns a unhot numpy array.

1.7.2 Random Utils

npdl.utils.get_rng()
Get the package-level random number generator.

Returns numpy.random.RandomState instance

The numpy.random.RandomState instance passed to the most recent call of
set_rng(),or numpy.randomif set_rng () has never been called.

npdl.utils.set_rng(rmg)
Set the package-level random number generator.

Parameters new_rng : numpy . random or a numpy . random.RandomState instance
The random number generator to use.

npdl.utils.set_seed (seed)
Set numpy seed.

Parameters seed : int

npdl.utils.get_dtype ()
Get data dtype numpy . dtype.

Returns str or numpy.dtype

npdl.utils.set_dtype (dtype)
Set numpy dtype.

Parameters dtype : str or numpy.dtype

Data Utils

one_hot One-hot encoding is often used for indicating the state of a
state machine.

unhot Get argmax indexes.

Random Utils
get_rng Get the package-level random number generator.
set_rng Set the package-level random number generator.
set_seed Set numpy seed.
get_dtype Get data dtype numpy . dtype.

Continued on next page

1.7. npdl.utils 33

numpydl Documentation, Release 0.4.0

Table 1.14 — continued from previous page

set_dtype Set numpy dtype.

34

Chapter 1. API References

CHAPTER 2

Indices and tables

* genindex
* modindex

e search

35

numpydl Documentation, Release 0.4.0

36

Chapter 2. Indices and tables

Bibliography

[R2121] [Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift](https:
/larxiv.org/abs/1502.03167)

[R2324] A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, J. Schmidhuber. A Novel Connectionist Sys-
tem for Improved Unconstrained Handwriting Recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 31, no. 5, 2009.

[R2424] H. Sak and A. W. Senior and F. Beaufays. Long short-term memory recurrent neural network architectures
for large scale acoustic modeling. Proc. Interspeech, pp338-342, Singapore, Sept. 2010

[R2727] A Theoretically Grounded Application of Dropout in Recurrent Neural Networks. http://arxiv.org/abs/1512.
05287

[R2930] Chung, Junyoung; Gulcehre, Caglar; Cho, KyungHyun; Bengio, Yoshua (2014). “Empirical Evaluation of
Gated Recurrent Neural Networks on Sequence Modeling”. arXiv:1412.3555Freely accessible [cs.NE].

[R3030] “Recurrent Neural Network Tutorial, Part 4 — Implementing a GRU/LSTM RNN with Python and Theano —
WildML”. Wildml.com. Retrieved May 18, 2016.

[R3334] Sepp Hochreiter; Jiirgen Schmidhuber (1997). “Long short-term memory”. Neural Computation. 9 (8):
1735-1780. doi:10.1162/ne c0.1997.9.8.1735. PMID 9377276.

[R3434] Felix A. Gers; Jiirgen Schmidhuber; Fred Cummins (2000). “Learning to Forget: Continual Prediction with
LSTM”. Neural Computation. 12 (10): 2451-2471. doi:10.1162/089976600300015015.

[R3738] Sepp Hochreiter; Jiirgen Schmidhuber (1997). “Long short-term memory”. Neural Computation. 9 (8):
1735-1780. doi:10.1162/ne c0.1997.9.8.1735. PMID 9377276.

[R3838] Felix A. Gers; Jiirgen Schmidhuber; Fred Cummins (2000). “Learning to Forget: Continual Prediction with
LSTM”. Neural Computation. 12 (10): 2451-2471. doi:10.1162/089976600300015015.

[R4747] Lehmann, E. L.; Casella, George (1998). Theory of Point Estimation (2nd ed.). New York: Springer. ISBN
0-387-98502-6. MR 1639875.

[R4950] Nikulin, M.S. (2001), “Hellinger distance”, in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer,
ISBN 978-1-55608-010-4

[R5050] Jump up ~ Hellinger, Ernst (1909), “Neue Begriindung der Theorie quadratischer Formen von un-
endlichvielen Verdnderlichen”, Journal fiir die reine und angewandte Mathematik (in German), 136: 210-271,
doi:10.1515/crll.1909.136.210, JFM 40.0393.01

37

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1512.05287
http://arxiv.org/abs/1512.05287

numpydl Documentation, Release 0.4.0

[R6566] Duchi, J., Hazan, E., & Singer, Y. (2011): Adaptive subgradient methods for online learning and stochastic
optimization. JIMLR, 12:2121-2159.

[R6666] Chris Dyer: Notes on AdaGrad. http://www.ark.cs.cmu.edu/cdyer/adagrad.pdf

[R6969] Tieleman, T. and Hinton, G. (2012): Neural Networks for Machine Learning, Lecture 6.5 - rmsprop. Cours-
era. http://www.youtube.com/watch?v=03sxAc4hxZU (formula @5:20)

[R7171] Zeiler, M. D. (2012): ADADELTA: An Adaptive Learning Rate Method. arXiv Preprint arXiv:1212.5701.

[R7373] Kingma, Diederik, and Jimmy Ba (2014): Adam: A Method for Stochastic Optimization. arXiv preprint
arXiv:1412.6980.

[R7575] Kingma, Diederik, and Jimmy Ba (2014): Adam: A Method for Stochastic Optimization. arXiv preprint
arXiv:1412.6980.

38 Bibliography

http://www.ark.cs.cmu.edu/cdyer/adagrad.pdf
http://www.youtube.com/watch?v=O3sxAc4hxZU

Python Module Index

npdl.
npdl.
.layers.base, 3
npdl.
npdl.
npdl.
npdl.
npdl.
npdl.
npdl.
npdl.
.objectives, 24
npdl.
npdl.
npdl.
npdl.

npdl

npdl

activations, 12
layers,3

layers.convolution,6
layers.core, 4
layers.embedding, 6
layers.normalization, 6
layers.pooling,7
layers.recurrent,’
layers.shape, 10
model, 32

optimizers, 28
utils, 32
utils.data, 32
utils.random, 33

39

numpydl Documentation, Release 0.4.0

40

Python Module Index

Index

A

Activation (class in npdl.activations), 12
Adadelta (class in npdl.optimizers), 30
Adagrad (class in npdl.optimizers), 29
Adam (class in npdl.optimizers), 31
Adamax (class in npdl.optimizers), 31

B

backward() (npdl.layers.BatchLSTM method), 10

backward() (npdl.layers.Dense method), 5

backward() (npdl.layers.Layer method), 3

backward() (npdl.layers.Linear method), 4

backward() (npdl.objectives.BinaryCrossEntropy
method), 26

backward() (npdl.objectives.HellingerDistance method),
26

backward() (npdl.objectives.MeanSquaredError method),
25

backward() (npdl.objectives.Objective method), 24

backward() (npdl.objectives.SoftmaxCategorical CrossEntro

method), 27
BatchLSTM (class in npdl.layers), 9
BatchNormal (class in npdl.layers), 6
BCE (in module npdl.objectives), 27
BinaryCrossEntropy (class in npdl.objectives), 26

C

connect_to() (npdl.layers.BatchLSTM method), 10
connect_to() (npdl.layers.Layer method), 3
Convolution (class in npdl.layers), 6

D

Dense (class in npdl.layers), 4

derivative() (npdl.activations.Activation method), 12
derivative() (npdl.activations.Elliot method), 19
derivative() (npdl.activations.Linear method), 17
derivative() (npdl.activations.ReLU method), 16
derivative() (npdl.activations.Sigmoid method), 12
derivative() (npdl.activations.Softmax method), 18

derivative() (npdl.activations.SoftPlus method), 21

derivative() (npdl.activations.SoftSign method), 22

derivative() (npdl.activations.SymmetricElliot method),
20

derivative() (npdl.activations.Tanh method), 14

Dropout (class in npdl.layers), 5

E

Elliot (class in npdl.activations), 19
Embedding (class in npdl.layers), 6

F

Flatten (class in npdl.layers), 10

forward() (npdl.activations.Activation method), 12

forward() (npdl.activations.Elliot method), 19

forward() (npdl.activations.Linear method), 17

forward() (npdl.activations.ReLU method), 16

forward() (npdl.activations.Sigmoid method), 13

forward() (npdl.activations.Softmax method), 18

forward() (npdl.activations.SoftPlus method), 22

I%rward() (npdl.activations.SoftSign method), 23

forward() (npdl.activations.SymmetricElliot method), 21

forward() (npdl.activations.Tanh method), 14

forward() (npdl.layers.BatchLSTM method), 10

forward() (npdl.layers.Dense method), 5

forward() (npdl.layers.Dropout method), 5

forward() (npdl.layers.Layer method), 3

forward() (npdl.layers.Linear method), 4

forward() (npdl.objectives.BinaryCrossEntropy method),
27

forward() (npdl.objectives.HellingerDistance method), 26

forward() (npdl.objectives.MeanSquaredError method),
25

forward() (npdl.objectives.Objective method), 25

forward() (npdl.objectives.SoftmaxCategoricalCrossEntropy

method), 27
from_json() (npdl.layers.Layer class method), 3

G

get_dtype() (in module npdl.utils), 33

41

numpydl Documentation, Release 0.4.0

get_rng() (in module npdl.utils), 33
grads (npdl.layers.Layer attribute), 3
GRU (class in npdl.layers), 8

H

HeD (in module npdl.objectives), 26
HellingerDistance (class in npdl.objectives), 26

L

Layer (class in npdl.layers), 3
Linear (class in npdl.activations), 17
Linear (class in npdl.layers), 4
LSTM (class in npdl.layers), 9

M

MaxPooling (class in npdl.layers), 7
MeanPooling (class in npdl.layers), 7
MeanSquaredError (class in npdl.objectives), 25
Model (class in npdl.model), 32

Momentum (class in npdl.optimizers), 29

MSE (in module npdl.objectives), 26

N

NesterovMomentum (class in npdl.optimizers), 29
npdl.activations (module), 12
npdl.layers (module), 3
npdl.layers.base (module), 3
npdl.layers.convolution (module), 6
npdl.layers.core (module), 4
npdl.layers.embedding (module), 6
npdl.layers.normalization (module), 6
npdl.layers.pooling (module), 7
npdl.layers.recurrent (module), 7
npdl.layers.shape (module), 10
npdl.model (module), 32
npdl.objectives (module), 24
npdl.optimizers (module), 28
npdl.utils (module), 32
npdl.utils.data (module), 32
npdl.utils.random (module), 33

O

Objective (class in npdl.objectives), 24
one_hot() (in module npdl.utils), 32

P

param_grads (npdl.layers.Layer attribute), 3
params (npdl.layers.Layer attribute), 3
predict() (npdl.model.Model method), 32

R

Recurrent (class in npdl.layers), 7
ReLU (class in npdl.activations), 15

RMSprop (class in npdl.optimizers), 30

S

SCCE (in module npdl.objectives), 28

set_dtype() (in module npdl.utils), 33

set_rng() (in module npdl.utils), 33

set_seed() (in module npdl.utils), 33

SGD (class in npdl.optimizers), 28

Sigmoid (class in npdl.activations), 12

SimpleRNN (class in npdl.layers), 8

Softmax (class in npdl.activations), 18

Softmax (class in npdl.layers), 5

SoftmaxCategoricalCrossEntropy (class
npdl.objectives), 27

SoftPlus (class in npdl.activations), 21

SoftSign (class in npdl.activations), 22

SymmetricElliot (class in npdl.activations), 20

T

Tanh (class in npdl.activations), 14
to_json() (npdl.layers.Layer method), 4

U

unhot() (in module npdl.utils), 33

in

42

Index

	API References
	npdl.layers
	npdl.activations
	npdl.initializations
	npdl.objectives
	npdl.optimizers
	npdl.model
	npdl.utils

	Indices and tables
	Bibliography
	Python Module Index

