Source code for npdl.activations

# -*- coding: utf-8 -*-

"""
Non-linear activation functions for artificial neurons.

A function used to transform the activation level of a unit (neuron) into an 
output signal. Typically, activation functions have a "squashing" effect. 
Together with the PSP function (which is applied first) this defines the 
unit type. Neural Networks supports a wide range of activation functions.
"""

import copy

import numpy as np

from npdl.utils.random import get_dtype


# activation-start


[docs]class Activation(object): """Base class for activations. """ def __init__(self): self.last_forward = None
[docs] def forward(self, input): """Forward Step. Parameters ---------- input : numpy.array the input matrix. """ raise NotImplementedError
[docs] def derivative(self, input=None): """Backward step. Parameters ---------- input : numpy.array, optional. If provide `input`, this function will not use `last_forward`. """ raise NotImplementedError
def __str__(self): return self.__class__.__name__
# activation-end # sigmoid-start
[docs]class Sigmoid(Activation): """Sigmoid activation function. """ def __init__(self): super(Sigmoid, self).__init__()
[docs] def forward(self, input, *args, **kwargs): """A sigmoid function is a mathematical function having a characteristic "S"-shaped curve or sigmoid curve. Often, sigmoid function refers to the special case of the logistic function and defined by the formula :math:`\\varphi(x) = \\frac{1}{1 + e^{-x}}` (given the input :math:`x`). Parameters ---------- input : float32 The activation (the summed, weighted input of a neuron). Returns ------- float32 in [0, 1] The output of the sigmoid function applied to the activation. """ self.last_forward = 1.0 / (1.0 + np.exp(-input)) return self.last_forward
[docs] def derivative(self, input=None): """The derivative of sigmoid is .. math:: \\frac{dy}{dx} & = (1-\\varphi(x)) \\otimes \\varphi(x) \\\\ & = \\frac{e^{-x}}{(1+e^{-x})^2} \\\\ & = \\frac{e^x}{(1+e^x)^2} Returns ------- float32 The derivative of sigmoid function. """ last_forward = self.forward(input) if input else self.last_forward return np.multiply(last_forward, 1 - last_forward)
# sigmoid-end # tanh-start
[docs]class Tanh(Activation): """Tanh activation function. The hyperbolic tangent function is an old mathematical function. It was first used in the work by L'Abbe Sauri (1774). """ def __init__(self): super(Tanh, self).__init__()
[docs] def forward(self, input): """This function is easily defined as the ratio between the hyperbolic sine and the cosine functions (or expanded, as the ratio of the half‐difference and half‐sum of two exponential functions in the points :math:`z` and :math:`-z`): .. math:: tanh(z) & = \\frac{sinh(z)}{cosh(z)} \\\\ & = \\frac{e^z - e^{-z}}{e^z + e^{-z}} Fortunately, numpy provides :meth:`tanh` methods. So in our implementation, we directly use :math:`\\varphi(x) = \\tanh(x)`. Parameters ---------- x : float32 The activation (the summed, weighted input of a neuron). Returns ------- float32 in [-1, 1] The output of the tanh function applied to the activation. """ self.last_forward = np.tanh(input) return self.last_forward
[docs] def derivative(self, input=None): """The derivative of :meth:`tanh` functions is .. math:: \\frac{d}{dx} tanh(x) & = \\frac{d}{dx} \\frac{sinh(x)}{cosh(x)} \\\\ & = \\frac{cosh(x) \\frac{d}{dx}sinh(x) - sinh(x) \\frac{d}{dx}cosh(x) }{ cosh^2(x)} \\\\ & = \\frac{ cosh(x) cosh(x) - sinh(x) sinh(x) }{ cosh^2(x)} \\\\ & = 1 - tanh^2(x) Returns ------- float32 The derivative of tanh function. """ last_forward = self.forward(input) if input else self.last_forward return 1 - np.power(last_forward, 2)
# tanh-end # relu-start
[docs]class ReLU(Activation): """Rectify activation function. Two additional major benefits of ReLUs are sparsity and a reduced likelihood of vanishing gradient. But first recall the definition of a ReLU is :math:`h=max(0,a)` where :math:`a=Wx+b`. One major benefit is the reduced likelihood of the gradient to vanish. This arises when :math:`a>0`. In this regime the gradient has a constant value. In contrast, the gradient of sigmoids becomes increasingly small as the absolute value of :math:`x` increases. The constant gradient of ReLUs results in faster learning. The other benefit of ReLUs is sparsity. Sparsity arises when :math:`a≤0`. The more such units that exist in a layer the more sparse the resulting representation. Sigmoids on the other hand are always likely to generate some non-zero value resulting in dense representations. Sparse representations seem to be more beneficial than dense representations. """ def __init__(self): super(ReLU, self).__init__()
[docs] def forward(self, input): """During the forward pass, it inhibits all inhibitions below some threshold :math:`ϵ`, typically :math:`0`. In other words, it computes point-wise .. math:: y=max(0,x) Parameters ---------- x : float32 The activation (the summed, weighted input of a neuron). Returns ------- float32 The output of the rectify function applied to the activation. """ self.last_forward = input return np.maximum(0.0, input)
[docs] def derivative(self, input=None): """The point-wise derivative for ReLU is :math:`\\frac{dy}{dx} = 1`, if :math:`x>0`, or :math:`\\frac{dy}{dx} = 0`, if :math:`x<=0`. Returns ------- float32 The derivative of ReLU function. """ last_forward = input if input else self.last_forward res = np.zeros(last_forward.shape, dtype=get_dtype()) res[last_forward > 0] = 1. return res
# relu-end # linear-start
[docs]class Linear(Activation): """Linear activation function. """ def __init__(self): super(Linear, self).__init__()
[docs] def forward(self, input): """It's also known as identity activation funtion. The forward step is :math:`\\varphi(x) = x` Parameters ---------- x : float32 The activation (the summed, weighted input of a neuron). Returns ------- float32 The output of the identity applied to the activation. """ self.last_forward = input return input
[docs] def derivative(self, input=None): """Backward propagation. The backward also return identity matrix. Returns ------- float32 The derivative of linear function. """ last_forward = input if input else self.last_forward return np.ones(last_forward.shape, dtype=get_dtype())
# linear-end # softmax-start
[docs]class Softmax(Activation): """Softmax activation function. """ def __init__(self): super(Softmax, self).__init__()
[docs] def forward(self, input): """:math:`\\varphi(\\mathbf{x})_j = \\frac{e^{\mathbf{x}_j}}{\sum_{k=1}^K e^{\mathbf{x}_k}}` where :math:`K` is the total number of neurons in the layer. This activation function gets applied row-wise. Parameters ---------- x : float32 The activation (the summed, weighted input of a neuron). Returns ------- float32 where the sum of the row is 1 and each single value is in [0, 1] The output of the softmax function applied to the activation. """ assert np.ndim(input) == 2 self.last_forward = input x = input - np.max(input, axis=1, keepdims=True) exp_x = np.exp(x) s = exp_x / np.sum(exp_x, axis=1, keepdims=True) return s
[docs] def derivative(self, input=None): """Backward propagation. Returns ------- float32 The derivative of Softmax function. """ last_forward = input if input else self.last_forward return np.ones(last_forward.shape, dtype=get_dtype())
# softmax-end # elliot-start
[docs]class Elliot(Activation): """ A fast approximation of sigmoid. The function was first introduced in 1993 by D.L. Elliot under the title A Better Activation Function for Artificial Neural Networks. The function closely approximates the Sigmoid or Hyperbolic Tangent functions for small values, however it takes longer to converge for large values (i.e. It doesn't go to 1 or 0 as fast), though this isn't particularly a problem if you're using it for classification. """ def __init__(self, steepness=1): super(Elliot, self).__init__() self.steepness = steepness
[docs] def forward(self, input): """Forward propagation. Parameters ---------- x : float32 The activation (the summed, weighted input of a neuron). Returns ------- float32 The output of the softplus function applied to the activation. """ self.last_forward = 1 + np.abs(input * self.steepness) return 0.5 * self.steepness * input / self.last_forward + 0.5
[docs] def derivative(self, input=None): """Backward propagation. Returns ------- float32 The derivative of Elliot function. """ last_forward = 1 + np.abs(input * self.steepness) if input else self.last_forward return 0.5 * self.steepness / np.power(last_forward, 2)
# elliot-end # symmetric-elliot-start
[docs]class SymmetricElliot(Activation): """Elliot symmetric sigmoid transfer function. """ def __init__(self, steepness=1): super(SymmetricElliot, self).__init__() self.steepness = steepness
[docs] def forward(self, input): """Forward propagation. Parameters ---------- x : float32 The activation (the summed, weighted input of a neuron). Returns ------- float32 The output of the softplus function applied to the activation. """ self.last_forward = 1 + np.abs(input * self.steepness) return input * self.steepness / self.last_forward
[docs] def derivative(self, input=None): """Backward propagation. Returns ------- float32 The derivative of SymmetricElliot function. """ last_forward = 1 + np.abs(input * self.steepness) if input else self.last_forward return self.steepness / np.power(last_forward, 2)
# symmetric-elliot-end # softplus-start
[docs]class SoftPlus(Activation): """Softplus activation function. """ def __init__(self): super(SoftPlus, self).__init__()
[docs] def forward(self, input): """:math:`\\varphi(x) = \\log(1 + e^x)` Parameters ---------- x : float32 The activation (the summed, weighted input of a neuron). Returns ------- float32 The output of the softplus function applied to the activation. """ self.last_forward = np.exp(input) return np.log(1 + self.last_forward)
[docs] def derivative(self, input=None): """Backward propagation. Returns ------- float32 The derivative of Softplus function. """ last_forward = np.exp(input) if input else self.last_forward return last_forward / (1 + last_forward)
# softplus-end # softsign-start
[docs]class SoftSign(Activation): """SoftSign activation function. """ def __init__(self): super(SoftSign, self).__init__()
[docs] def forward(self, input): """Forward propagation. Parameters ---------- x : float32 The activation (the summed, weighted input of a neuron). Returns ------- float32 The output of the softplus function applied to the activation. """ self.last_forward = np.abs(input) + 1 return input / self.last_forward
[docs] def derivative(self, input=None): """Backward propagation. Returns ------- float32 The derivative of SoftSign function. """ last_forward = np.abs(input) + 1 if input else self.last_forward return 1. / np.power(last_forward, 2)
# softsign-end def get(activation): if activation.__class__.__name__ == 'str': if activation in ['sigmoid', 'Sigmoid']: return Sigmoid() if activation in ['tan', 'tanh', 'Tanh']: return Tanh() if activation in ['relu', 'ReLU', 'RELU']: return ReLU() if activation in ['linear', 'Linear']: return Linear() if activation in ['softmax', 'Softmax']: return Softmax() if activation in ['elliot', 'Elliot']: return Elliot() if activation in ['symmetric_elliot', 'SymmetricElliot']: return SymmetricElliot() if activation in ['SoftPlus', 'soft_plus', 'softplus']: return SoftPlus() if activation in ['SoftSign', 'softsign', 'soft_sign']: return SoftSign() raise ValueError('Unknown activation name: {}.'.format(activation)) elif isinstance(activation, Activation): return copy.deepcopy(activation) else: raise ValueError("Unknown type: {}.".format(activation.__class__.__name__))